
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Non-Poissonian Quantum Jumps of a Fluxonium Qubit due
to Quasiparticle Excitations

U. Vool, I. M. Pop, K. Sliwa, B. Abdo, C. Wang, T. Brecht, Y. Y. Gao, S. Shankar, M. Hatridge,
G. Catelani, M. Mirrahimi, L. Frunzio, R. J. Schoelkopf, L. I. Glazman, and M. H. Devoret

Phys. Rev. Lett. 113, 247001 — Published  8 December 2014
DOI: 10.1103/PhysRevLett.113.247001

http://dx.doi.org/10.1103/PhysRevLett.113.247001


Non-Poissonian Quantum Jumps of a Fluxonium Qubit due to Quasiparticle
Excitations

U. Vool,1, ∗ I. M. Pop,1 K. Sliwa,1 B. Abdo,1, † C. Wang,1 T. Brecht,1 Y. Y. Gao,1 S. Shankar,1 M. Hatridge,1

G. Catelani,2 M. Mirrahimi,1, 3 L. Frunzio,1 R. J. Schoelkopf,1 L. I. Glazman,1 and M. H. Devoret1

1Department of Applied Physics and Physics, Yale University, New Haven, CT 06520
2Peter Grünberg Institut (PGI-2), Forschungszentrum Jülich, 52425 Jülich, Germany
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As the energy relaxation time of superconducting qubits steadily improves, non-equilibrium quasi-
particle excitations above the superconducting gap emerge as an increasingly relevant limit for qubit
coherence. We measure fluctuations in the number of quasiparticle excitations by continuously mon-
itoring the spontaneous quantum jumps between the states of a fluxonium qubit, in conditions where
relaxation is dominated by quasiparticle loss. Resolution on the scale of a single quasiparticle is
obtained by performing quantum non-demolition projective measurements within a time interval
much shorter than T1, using a quantum limited amplifier (Josephson Parametric Converter). The
quantum jumps statistics switches between the expected Poisson distribution and a non-Poissonian
one, indicating large relative fluctuations in the quasiparticle population, on time scales varying
from seconds to hours. This dynamics can be modified controllably by injecting quasiparticles or
by seeding quasiparticle-trapping vortices by cooling down in magnetic field.

A mesoscopic superconducting circuit, of typical size
smaller than 1 mm3, cooled to a temperature well be-
low the superconducting gap should be completely free
of thermal quasiparticle (QP) excitations. However, in
the last decade there has been growing experimental evi-
dence that the QP density at low temperatures saturates
to values orders of magnitude above the value expected
at thermal equilibrium[1–5]. These non-equilibrium QP
excitations limit the performance of a variety of super-
conducting devices, such as single-electron turnstiles[6],
kinetic inductance[7, 8] and quantum capacitance[9] de-
tectors, micro-coolers[10, 11], as well as Andreev bound
state nano-systems[12, 13]. Moreover, QP’s are an im-
portant intrinsic decoherence mechanism for supercon-
ducting two level systems (qubits)[14–19]. In particular,
a recent experiment performed on the fluxonium qubit
showed energy relaxation times in excess of 1 ms, lim-
ited by QP’s[20]. Surprisingly, the sources generating
these QP excitations are not yet positively identified.
The measurement of non-equilibrium QP dynamics at
low temperatures could provide insight into their origin
as well as an efficient tool to quantify QP suppression
solutions.

In this letter, we show that the quantum jumps[21] of
a qubit whose lifetime is limited by QP tunneling, such
as the fluxonium artificial atom, can serve as a sensi-
tive probe of QP dynamics. A jump in the state of the
qubit indicates an interaction of the qubit with a QP, and
therefore fluctuations in the rate of quantum jumps are
directly linked to changes in QP number. Tracking the
state of the qubit in real time requires fast, single-shot
projective measurement with minimal added noise, made
possible by the advent of quantum-limited amplifiers[22–
24]. In this work, we use a Josephson Parametric Con-
verter (JPC) quantum limited amplifier[23, 25] to moni-

tor the state of our qubit with a resolution of 5 µs, two or-
ders of magnitude faster than the qubit lifetime. We find
that the qubit jump statistics fluctuates between Poisso-
nian and non-Poissonian, corresponding to a change in
the QP number. Surprisingly, these fluctuations do not
average over timescales ranging from seconds to hours.
The quantum jumps we measure in this work are driven
by a few QP’s in the entire device at any given time. In
a related work, the dynamics of a population of a few
thousands of QP’s is probed by T1 measurements of a
transmon qubit[26].

The fluxonium qubit[27] (Fig. 1a) consists of a Joseph-
son junction shunted by a superinductor[28, 29], which is
itself an array of large Josephson junctions[30]. An op-
tical image of the fluxonium sample coupled to its read-
out antenna is shown in Fig. 1b. An applied external
flux Φext strongly affects the fluxonium spectrum, energy
eigenstates, and its susceptibility to different loss mech-
anisms. The overall quality factor Q of the fluxonium is
given by:

1

Q
=

∑
x

ηx
px
Qx

(1)

where Qx is the quality factor of the material involved
in loss mechanism x, px is its participation ratio and ηx
is the oscillator strength of the qubit transition induced
by x. Fig. 1c shows ηx as a function of external flux
for three main loss mechanisms - capacitive, inductive
and QP tunneling across the small junction. The main
inductive loss mechanism for the fluxonium is due to QP
tunneling across the array junctions. Note that around
Φext = Φ0/2 the fluxonium qubit becomes insensitive to
loss due to QP tunneling across the small junction and
maximally sensitive to loss due to QP tunneling across
the array junctions.
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FIG. 1. The fluxonium qubit. (a) Electrical circuit schematic. The small junction, which is modeled by an ideal tunnel junction
(green) in parallel with a capacitor (red), is shunted by an array of large Josephson junctions (blue). (b) Optical microscope
image of the fluxonium qubit inductively coupled to the antenna. The top and bottom insets show magnified images of the
fluxonium loop and antenna pads, respectively. The small junction is shunted by a superinductance composed of an array
of 95 Josephson junctions, enclosing a magnetic flux Φext. (c) The oscillator strength η (see Eq. 1) of different qubit decay
mechanisms vs. the applied external flux Φext. The corresponding capacitive, inductive and Josephson energies, defined for
the fluxonium artificial atom in Ref. [27], are shown as EC , EL and EJ respectively.

The insensitivity of the fluxonium qubit to QP tunnel-
ing across the small junction was demonstrated by the
measurement of a sharp T1 increase to values above 1 ms
in the vicinity of Φ0/2[20]. In addition, non-exponential
decay curves were occasionally measured, suggesting a
fluctuating QP population. To gain access to these fluc-
tuations, we improved the readout setup used in Ref. [20]
by adding a JPC amplifier, thus increasing the signal-to-
noise ratio of the setup by a factor of 10. A schematic of
the measurement setup is presented in Fig. 2a.

To monitor the state of the qubit, we apply a con-
tinuous wave drive at the cavity resonance correspond-
ing to an average photon population n̄ = 2.5. This
value is a compromise between fast measurement and
the effect of cavity photons which reduce the qubit life-
time and saturate the JPC output[31]. In Fig. 2b we
show a histogram of measured I,Q quadratures at flux
bias point Φext = Φ0/2 where the qubit frequency is
ωge/2π = 665 MHz. The measured distributions corre-
sponding to the ground/excited states of the fluxonium
qubit (right/left) are separated by 5 standard deviations
σ. The relative population of the fluxonium in its excited
state (33%) corresponds to an effective temperature of
45 mK.

A few examples of measured qubit quantum jump
traces are shown in Fig. 2c. To estimate the state of the
qubit (orange) from the time trace of quadrature I (blue)
we apply a two-point filter. The filter declares a jump in
the qubit state if the quadrature value crosses a thresh-
old set σ/2 away from the jump destination. Otherwise
the qubit is declared to remain in its previous state. The
traces suggest there are two regimes with distinctly dif-
ferent jump statistics. There appear to be “quiet” times
with few jumps and long intervals between them (on the

order of 1 ms) and “noisy” times with many rapid con-
secutive jumps (less than 100 µs apart).

Uncorrelated quantum jumps obey Poisson statistics,
leading to an exponential distribution of the time spent in
the ground or excited state pP(τ) = 1

τ̄ e
−τ/τ̄ where τ̄ is the

mean time spent in the ground or excited state. To en-
hance the visibility of deviations from Poisson statistics,
which would merely show up as non-exponential decrease
of p(τ), we depict the distribution τp(τ) instead. In Fig.
3a and 3b we show two different second-long measure-
ments of τp(τ) distributions for the ground (blue) and
excited (red) states, histogrammed with logarithmic bins.
The dashed lines correspond to the distribution predicted
by Poisson statistics with τ̄ taken as the measured aver-
age time either in the ground (blue) or excited (red) state
(see supplementary material[31] for a detailed definition).
There is significant deviation between the two measure-
ments. In Fig. 3b we show a measurement record which
we call “quiet”, apparently agreeing with Poisson statis-
tics. The “noisy” record in Fig. 3a deviates significantly
from the Poisson prediction, with long and short times
appearing considerably more frequently than expected.

In Fig. 3c, the mean time spent in the ground (blue)
and excited (red) state is shown as a function of time,
over several minutes. Each point corresponds to a 1 sec-
ond temporal average. To quantify the deviation of each
measurement from Poisson statistics, we calculate the fi-
delity of the measured histogram to the Poisson predic-

tion F =

∑
i

√
MiPi∑

i
Mi

, where Mi is the measured ground

state histogram value of bin i and Pi is the predicted
value of bin i for a Poisson process. In Fig. 3d, we plot the
deviation from Poisson statistics, 1−F , corresponding to
the measurements in Fig. 3c. These two figures indicate a



3

I (photon)1/2

I (
ph

ot
on

)1/
2

-20 -10 0 10 20-20

-10
0

10

-10
0

10

-10
0

10

0 10 20
Q

 (p
ho

to
n)

1/
2

20

10

0

-10

-20

0 80

(b)

(c)

(a)

1 2 3 4 5 6
Time (ms)

98% Ground/ExcitedData

Signal

Idler
Pump

JPC

HEMT

I

Q

Ref

fluxonium
qubit

copper cavity

readout
drive

circulator

circulator

Excited Ground

n = 2.5
counts

FIG. 2. (a) Circuit diagram of the measurement setup. The
fluxonium qubit (green) is dispersively coupled to the read-
out cavity (orange) through the antenna (see Fig. 1b). The
readout signal reflected from the cavity is pre-amplified us-
ing a JPC, then it is routed through a commercial HEMT
amplifier at 4 K and demodulated using a heterodyne inter-
ferometry setup at room temperature. (b) Histogram of mea-
sured I,Q quadratures for the fluxonium in equilibrium with
its environment at Φext = Φ0/2 (ωge/2π = 665 MHz). Each
count corresponds to 5 µs of integration and the total num-
ber of counts is 200,000. The two distinct peaks in the I,Q
plane correspond to the ground (right) and 1st excited (left)
states of the qubit. Their relative amplitudes give an effec-
tive temperature of 45 mK. (c) Three examples of measured
quantum jump traces corresponding to the time evolution of
the I quadrature for the same measurement presented in (b).
We show the raw traces in blue and an estimate of the fluxo-
nium qubit state calculated using a two-point filter (see text)
in orange. Note that the characteristic time between jumps
is not constant throughout the record.

correlation between long fluxonium energy lifetimes and
agreement with Poisson statistics[31]. The “noisy” sec-
onds appear to have an abundance of short quantum
jumps which distort the Poisson statistics, typical for the
“quiet” seconds. Fig. 3e shows σ̄z, the mean polarization
of the fluxonium qubit for the same measurements. The
fluctuations in polarization are not correlated with the
fluctuations between “quiet” and “noisy” seconds. The
examples in Fig. 3a and 3b were taken for measurements
with the same polarization corresponding to a tempera-
ture of 49 mK (highlighted in gray in Fig. 3c,d,e).

The susceptibility of the fluxonium qubit at Φext =
Φ0/2 to loss due to QP in the array suggests that fluctu-
ations in the mean time between qubit jumps and their
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FIG. 3. Measurement of “quiet” and “noisy” behavior of the
fluxonium quantum jumps. (a,b) Histograms with logarith-
mic binning of the time intervals between jumps τ for the
qubit in the ground/excited (blue/red) states, scaled by τ .
Each count represents a 5µs time interval. In dashed lines we
plot the Poissonian prediction with the measured mean time
interval τ̄ . Each histogram was taken from a 1 s long mea-
surement record. The insets show the corresponding linear
binning histograms proportional to p(τ). Data in (b) agree
with the Poisson prediction, while in (a) significantly devi-
ate from it. (c) Measurement of the average time spent by
the qubit in the ground (blue) and excited (red) states vs.
time. There are significant fluctuations in these values over
the course of minutes. (d) 1 − F (see text) vs. time, quanti-
fying the deviation between the measured histogram and the
corresponding Poisson prediction for the ground state. (e)
Average polarization of the fluxonium qubit vs. time. The
dashed blue line marks the average polarization which corre-
sponds to a temperature of 46 mK and the gray dashed lines
are markers for 40 mK and 60 mK. Note that the qubit tem-
perature is not correlated with the fluctuations between the
“quiet” and “noisy” intervals.

statistics result from the changing QP population. To
test this hypothesis, we compare our measurements of
spontaneous quantum jump traces to measurements in
which we modify the number of QP’s. We do this in
two ways: generating QP’s by applying strong microwave
pulses and trapping QP’s by cooling in magnetic field.

We created a transient QP population in the array by
applying a microwave pulse resonant with the cavity fre-
quency of duration tG = 100 µs and amplitude of order
1 mV across the antenna, similarly to Ref. [26]. Af-
ter a 5 µs wait for the cavity photons to leak out, we
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FIG. 4. (a) Mean time in the ground state vs. time. Each
point represents an average over 1 second. Similar to the
data in Fig. 3c, we observe fluctuations between “quiet” and
“noisy” intervals. (b) Mean time in the ground state vs. time
in the presence of QP generation pulses. The inset shows
the pulse sequence we use. A QP generation pulse of length
tG = 100µs (red) applied at the cavity frequency switches the
antenna junctions into the dissipative regime and generates
QP in the junction array. This pulse is followed by 5 µs of
wait time (black) and a 10 ms readout pulse (blue) before
another QP generation pulse is applied. (c) Mean time in the
ground state vs. time, after cooling in magnetic field. (see
text). (d) Mean time until a jump from the excited to the
ground state vs. time after QP generation pulse of length
tG = 50 µs. The solid line is a fit to exponential equilibration
of qubit lifetime (see text). The inset shows the saturation
relative QP density x̄qp vs. the time to reach steady-state τss
for different QP generation pulse lengths. (e) Qubit effective
temperature vs. time after QP generation pulse of length
tG = 50 µs. The solid line is a fit to an exponential. Inset
shows the temperature after a QP generation pulse vs. the
thermal equilibration time τth for QP generation pulse lengths
corresponding to Fig. 4d.

monitor quantum jumps for 10 ms, after which we re-
peat the cycle. We estimate that at least 106 QP’s are
generated during each pulse. In Fig. 4a and b we show
a comparison between measurements of the mean time
spent in the ground state without and with QP genera-
tion pulses. In the presence of QP generation pulses, the
“quiet” seconds (higher mean time in the ground state)
are suppressed[31].

We reduced the number of QP’s by cooling down our
sample in a constant magnetic field corresponding to
Φ0/2 in the fluxonium loop. Under these conditions, the
antenna pads (see Fig. 1b) are threaded by flux corre-
sponding to several Φ0. During the field cooldown pro-

cess the pads can trap vortices[32, 33], which may act
as QP traps due to the reduced superconducting gap in
their cores[26, 34–36]. Fig. 4c shows measurements of the
mean time spent in the ground state taken after the sam-
ple was cooled in magnetic field. We observe an increase
in the number of “quiet” seconds, indicating a reduction
in the number of QP’s[31]. The fluxonium effective tem-
perature changes by less than 10 mK between different
cooldowns.

Taking advantage of the real time measurement of the
qubit relaxation, we can monitor the time evolution of
τ̄ after a QP generation pulse. In Fig. 4d we show the
average time spent in the excited state before a jump to
the ground state, as a function of time after the QP gen-
eration pulse for pulse length tG = 50 µs. This yields the
equilibration of qubit lifetime as injected QP’s leave the
junction array. The qubit lifetime eventually saturates
to a steady state dominated either by non-thermal QP’s
or other loss mechanisms. The rate to jump from the
excited to the ground state at time t after the pulse is
related to the relative QP density by[37]:

Γe→g(t) = xqp(t)

√
2∆

~ωge
2π
EL
~

(2)

where xqp is the ratio of QP’s to Cooper pairs in the
junction array and ∆ is the superconducting gap. We
fit the lifetime measurements to an exponential model
xqp(t) = x̄qp+(xqp(0)−x̄qp)e−t/τss from which we extract
the time to reach QP steady-state τss = 125±25µs and a
non-thermal background QP density x̄qp = 4± 1× 10−8,
corresponding to 1-2 QP’s in the whole array. Note
that the non-Poissonian jump statistics corresponding
to the “noisy” seconds (see Fig. 3a) show fluctuations
in the QP number on the order of their average value,
also suggesting the presence of only a few QP’s in the
whole array. This value for x̄qp is an order of magnitude
lower than what was measured for the small junction in
Ref. [20]. The origin of the difference is presently not
understood, although one could speculate that QP’s in
the array more easily diffuse into the antenna. Note that
the value for x̄qp is neither correlated with the QP gener-
ation pulse length tG nor the time to reach steady-state
τss (see inset of Fig. 4d). The extracted x̄qp should
be treated as an upper bound, since contributions from
other decay sources could be present. Due to the lim-
ited dynamic range of our qubit lifetime measurement, of
only a factor of 4, we cannot distinguish between differ-
ent QP removal mechanisms such as trapping, diffusion
or recombination[31]. The discrimination between these
mechanisms was recently demonstrated in a transmon
qubit[26].

From the quantum jump traces following a QP gener-
ation pulse, we can also extract the average polarization
of the qubit and hence its effective temperature. In Fig.
4e we show the extracted temperature vs. time, starting
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from 1.4 ms after a QP generation pulse, when the QP
population has already saturated. The initial increase
in temperature following the QP generation pulse is pro-
portional to the pulse length tG, and it is consistent with
an estimated dissipated power of 10−10 W absorbed in
the volume of the sapphire substrate. The temperature
equilibration time τth of several ms is much slower than
the sapphire thermalization time and is likely limited by
the sapphire-copper contact[31].

In conclusion, the distribution of spontaneous quan-
tum jumps of a fluxonium qubit indicates large relative
fluctuations in the energy lifetime of this artificial atom.
Corresponding changes of the QP density in the superin-
ductor appear to be the natural explanation. This is sup-
ported in particular by the increased fluxonium energy
lifetime in the presence of QP trapping vortices, which
also render the jump statistics Poissonian. The density
of QP’s extracted from the measurement does not ap-
pear to self-average over periods of seconds, minutes and
even hours. This suggests they originate from sources
external to the sample, such as stray infra-red[3, 38] or
higher energy radiation[5, 39]. In addition, the fluxo-
nium quantum jump statistics resolves a single QP on a
µs timescale, which could be a useful property for a low
flux, low energy, particle counting detector.
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