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In two-dimensional electron systems confined to GaAs quantum wells, as a function of either tilting
the sample in magnetic field or increasing density, we observe multiple spin-polarization transitions
of the fractional quantum Hall states at filling factors ν = 4/5 and 5/7. The number of observed
transitions provides evidence that these are fractional quantum Hall states of interacting two-flux
composite Fermions. Moreover, the fact that the reentrant integer quantum Hall effect near ν = 4/5
always develops following the transition to full spin polarization of the ν = 4/5 fractional quantum
Hall state links the reentrant phase to a pinned ferromagnetic Wigner crystal of composite Fermions.

Fractional quantum Hall states (FQHSs) are among
the most fundamental hallmarks of ultra-clean interact-
ing two-dimensional electron systems (2DESs) at a large
perpendicular magnetic field (B⊥) [1]. These incompress-
ible quantum liquid phases, signaled by the vanishing of
the longitudinal resistance (Rxx) and the quantization of
the Hall resistance (Rxy), can be explained by mapping
the interacting electrons to a system of essentially non-
interacting, 2p-flux composite Fermions (2pCFs), each
formed by attaching 2p magnetic flux quanta to an elec-
tron (p is an integer). The 2pCFs have discrete energy
levels, the so-called Λ-levels, and the FQHSs of electrons
seen around Landau level (LL) filling factor ν = 1/2 (1/4)
would correspond to the integer quantum Hall states
(IQHSs) of non-interacting 2CFs (4CFs) at integral νCF

[2]. In state-of-the-art, high-mobility 2DESs, FQHSs also
develop at unusual fillings, such as ν = 4/11 [3]. These
states cannot be explained in a non-interacting CF pic-
ture, and might signal the formation of fractional QHSs
of interacting 2CFs [4]. If so, then theory also predicts
that these states would possess different spin configura-
tions and therefore should exhibit spin-polarization tran-
sitions [5]; however, such transitions have not been seen
experimentally yet.

Here we report our extensive study of the FQHSs near
ν = 3/4 (at ν = 4/5 and 5/7) which are usually un-
derstood as the particle-hole counterparts of the FQHSs
near ν = 1/4 through the relation ν ↔ (1 − ν) [6].
For example, the ν = 4/5 FQHS would be equivalent
to the FQHS seen at ν = 1/5, correspond to a fully
spin-polarized IQHS of non-interacting 4CFs, and ex-
hibit no spin-polarization transitions [7]. Alternatively,
these states might be the FQHSs of interacting 2CFs at
νCF = ν/(1 − 2ν). If this is true, then the ν = 4/5
FQHS would be the νCF = −4/3 FQHS of interacting
2CFs, and have the same origin as the unconventional
FQHS seen at ν = 4/11 (νCF = 4/3) [3, 4]. In our ex-
periments, via either increasing the 2DES density or the
tilt angle (θ) between the magnetic field and the sam-
ple normal, we increase the ratio of the Zeeman energy
(EZ = |g|µBB where B is the total magnetic field) to
Coulomb energy (VC = e2/4πǫlB where lB =

√

~/eB⊥ is
the magnetic length), and demonstrate that the ν = 4/5
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FIG. 1. Schematic figures illustrating two different explana-
tions of the RIQHS near ν = 4/5. (a) The hole Wigner crystal
picture. The electrons at ν ∼ 4/5 are equivalent to holes at
νh ∼ 1/5. These holes condense into a liquid phase when the
short-range interaction dominates (left), and into a crystal
phase when the long-range interaction dominates in thicker
2DESs (right). The gray background represents electrons,
and white circles represent the holes. (b) The 2CF Wigner
crystal picture. The electrons at ν ∼ 4/5 are equivalent to
2CFs at |νCF | ∼ 4/3. There is one fully-filled, spin-up Λ-level
(the gray background), and the rest of the 2CFs can either
be spin-down (red) and form a liquid phase when the Zee-
man energy (EZ) is small (left panel), or be spin-up (blue)
at large EZ and form a ferromagnetic crystal phase of 2CFs
(right panel).

and 5/7 FQHSs indeed undergo transitions as they be-
come spin-polarized. The number of observed transi-
tions, one for the FQHS at ν = 4/5, and two for the
FQHS at ν = 5/7, is inconsistent with non-interacting
4CFs but agrees with what is expected for polarizing the
spins of interacting 2CFs, which form FQHSs at frac-

tional CF fillings νCF = −4/3 and -5/3.

In our Letter, we also address another hallmark of
clean 2DESs at high B⊥, namely the insulating phase
(IP) that terminates the series of FQHSs at low fillings,
near ν = 1/5 [8, 9]. This IP is generally believed to be a
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Wigner crystal, pinned by the small but ubiquitous dis-
order potential [10]. Recently, an IP was observed near
ν = 4/5 in clean 2DESs confined to relatively wide GaAs
quantum wells (QWs) [11, 12]. This phase, which is sig-
naled by a reentrant IQHS (RIQHS) near ν = 1, was
interpreted as the particle-hole symmetric state of the
Wigner crystal seen at very small ν [11, 12]. In this pic-
ture, the holes, unoccupied states in the lowest LL, have
filling factor νh ∼ 1/5 (= 1 − 4/5) and form a liquid
phase when the short-range interaction is strong; see the
left panel of Fig. 1(a). They turn into a solid phase when
the thickness of the 2DES increases and the long-range
interaction dominates (right panel of Fig. 1(a)). This
interpretation is plausible since the RIQHS only appears
when the QW width (W ) is more than about five times
larger than the magnetic length, but such an interpreta-
tion does not predict or allow for any transitions of the
ν = 4/5 FQHS. However, our experiments reveal that,
whenever the RIQHS near ν = 4/5 develops, it is pre-
ceded by a transition of the FQHS at ν = 4/5 to a fully
spin-polarized 2CF state. This provides evidence that
the RIQHS is the manifestation of a ferromagnetic 2CF

Wigner crystal (see Fig. 1(b)).

We studied 2DESs confined to wide GaAs QWs
bounded on each side by undoped Al0.24Ga0.76As spacer
layers and Si δ-doped layers, grown by molecular beam
epitaxy. We report here data for two samples, with W =
65 and 60 nm, and as-grown densities of n ≃ 1.4 and
0.4, in units of 1011 cm−2 which we use throughout this
report. The low-temperature mobility for these sam-
ples is ≃ 5 × 106 cm2/Vs. The samples have a van der
Pauw geometry with InSn contacts at their corners, and
each is fitted with an evaporated Ti/Au front-gate and
an In back-gate. We carefully control n while keeping
the charge distribution symmetric. The measurements
were carried out in dilution refrigerators, and using low-
frequency (. 40 Hz) lock-in technique.

Figure 2(a) shows Rxx and Rxy traces near ν = 3/4
measured in a 65-nm-wide QW, at n ≃ 1.00 to 1.54. The
deep Rxx minimum at ν = 4/5 in the lowest density
(n = 1.00) trace disappears at n = 1.13 and reappears
at higher densities. With increasing n, an Rxx minimum
also develops to the left of ν = 4/5, and merges with the
ν = 1 Rxx = 0 plateau at the highest density n = 1.54
(see down-arrows in Fig. 2(a)). Meanwhile, when the
ν = 4/5 FQHS reappears, Rxy starts to dip below its
classical Hall value on the sides of ν = 4/5 (up-arrows in
Fig. 2(a)). These two Rxy dips become deeper at higher
n and, at n ≃ 1.54, the Rxy minimum on the left side of
ν = 4/5 merges into the ν = 1 Rxy = h/e2 plateau [13].

The data of Fig. 2(a) provide evidence for the devel-
opment of a RIQHS between ν = 4/5 and 1, as reported
recently and attributed to the formation of a pinned
Wigner crystal [11, 12]. Note that at the onset of this
development, the ν = 4/5 FQHS shows a transition man-
ifested by the disappearance and reappearance of its Rxx
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FIG. 2. Longitudinal (Rxx) and Hall (Rxy) magnetoresistance
traces for 2D electrons confined to a 65-nm-wide GaAs QW
near ν = 3/4 as a function of (a) increasing density, and
(b) tilting the sample in the magnetic field. The density n
(in units of 1011 cm−2) or tilting angle θ for each trace is
indicated, and traces are shifted vertically for clarity. The
top (B⊥) axis in (a) is valid only for the n = 1.00 × 1011

cm−2 trace. Note also that the angular-dependent traces in
(b) were taken in a dilution refrigerator with a slightly warmer
base temperature (T ≃ 30 mK) compared to the one used to
take traces in (a) (T ≃ 25 mK). (c) Energy gap of the ν = 4/5
FQHS as a function of n. (d) Arrehnius plot of Rxx vs. 1/T
at n = 0.93 and 1.41× 1011 cm−2.

minimum. The central questions we address here are:
What is the source of this transition, and what does that
imply for the origin of the ν = 4/5 FQHS and the nearby
RIQHS?

As Fig. 2(b) illustrates, Rxx and Rxy measured in the
same QW at a fixed density n = 1.00 and different θ
reveal an evolution very similar to the one seen in Fig.
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FIG. 3. (a) Rxx measured in a 60-nm-wide QW near ν = 3/4,
at a fixed density n = 0.44 × 1011 cm−2 and different tilting
angles θ. (b) Rxx for a 65-nm-wide QW near ν = 5/4, at
θ = 0◦ and different densities n = 0.86 to 1.94 × 1011 cm−2.
(c, d) Schematic plots showing multiple configurations of the
ν = 4/5 and 6/5, and 5/7 and 9/7 FQHSs with different
spin-polarizations.

2(a). At θ = 0◦, a strong FQHS is seen at ν = 4/5. It
disappears at θ ≃ 30◦ but reappears at higher θ. Two
minima in Rxy on the sides of ν = 4/5, marked by the
up-arrows, develop at θ > 30◦. As θ is further increased,
the Rxy minimum to the left of ν = 4/5 deepens and
an Rxx minimum starts to appear at the same ν (see
down-arrows in Fig. 2(b)). At the highest tilting angles
θ > 40◦, these minima merge into the ν = 1 Rxy and Rxx

plateaus, respectively. This evolution with increasing θ is
very similar to what is seen in Fig. 2(a) as a function of
increasing n. Moreover, the ν = 4/5 FQHS transition in
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FIG. 4. Summary of the spin-polarization energy in units of
the Coulomb energy, EZ/VC , at different filling factors (ν).
Dotted lines are guides to the eye. All data points were mea-
sured in a symmetric 60-nm-QW. The transitions at ν = 2/3,
3/5 and 4/7 were measured in perpendicular magnetic field
by changing n, and the rest at a fixed density n = 0.44 by
changing θ. For each filling, only the (last) transition into a
fully spin-polarized configuration is shown.

Fig. 2(b) is induced by increasing EZ suggesting that it
is spin related, similar to the spin-polarization transitions
observed for other FQHSs [14–17].

Observing a spin-polarization transition for the ν =
4/5 FQHS, however, is surprising as this state is usually
interpreted as the particle-hole counterpart of the ν =
1/5 FQHS, which is the νCF = 1 of four-flux 4CFs. Such
a state should be always fully spin-polarized and no spin-
polarization transition is expected. On the other hand,
the ν = 4/5 FQHS can be interpreted as the νCF = −4/3
FQHS of interacting 2CFs, which has two possible spin
configurations, as shown in Fig. 3(c). The system has
one fully-occupied, spin-up, Λ-level and one 1/3-occupied
Λ-level. Depending on whether EZ is smaller or larger
than the Λ-level separation (~ωCF

C ) of the 2CFs, the 1/3-
filled Λ-level may be either spin-down or spin-up (see Fig.
3(c)) [18].

To further test the validity of the above interpretation,
we measured Rxx in a 60-nm-wide QW at n = 0.44 and
different θ in Fig. 3(a). The ν = 4/5 FQHS exhibits
a clear transition at θ = 60◦, manifested by a weaken-
ing of the Rxx minimum. Note that the transition of the
ν = 4/5 FQHS appears in Figs. 2(a), 2(b) and 3(a) when
the ratio of the Zeeman to Coulomb energies (EZ/VC)
is about 0.0145, 0.0157 and 0.0177, respectively. The
electron layer-thicknesses at these three transitions, pa-
rameterized by the standard deviation (λ) of the charge
distribution in units of lB, are 1.66, 1.52 and 0.75, re-
spectively. The softening of the Coulomb interaction due
to the finite-layer-thickness effect is less and the spin-
polarization energy should be higher for smaller λ/lB
(see [17] for the dependence of spin-polarization energy
on the finite-layer-thickness). Therefore, these values are
consistent with each other.

In Fig. 3(a), we also observe two transitions for the
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ν = 5/7 FQHS at θ = 37.5◦ and 50◦, suggesting three
different phases. This observation is consistent with the
ν = 5/7 FQHS being the νCF = −5/3 FQHS of the
interacting 2CFs, which has three different possible spin
configurations, as shown in Fig. 3(d). Similar to Fig.
3(c), the lowest spin-up Λ-level is always fully occupied.
The second Λ-level is 2/3-occupied spin-up (spin-down),
if EZ is larger (smaller) than ~ωCF

C . If EZ ≃ ~ωCF
C , the

2CFs form a novel spin-singlet state when the spin-up
and spin-down Λ-levels are both 1/3-occupied; see the
middle panel of Fig. 3(d).

Data near ν = 5/4 measured in the 65-nm-wide QW
at different densities, shown in Fig. 3(b), further con-
firm our picture. The ν = 6/5 and 9/7 FQHSs exhibit
transitions similar to their particle-hole conjugate states
at ν = 4/5 and 5/7, respectively [6]. The ν = 6/5
FQHS shows a transition at n = 1.78. At this transi-
tion, EZ/VC ≃ 0.0149 and λ/lB ≃ 1.86, very similar to
the corresponding values (0.0145 and 1.66) at ν = 4/5
in Fig. 2(a), suggesting that the particle-hole symmetry
ν ↔ (2 − ν) is conserved in this case [19]. Furthermore,
the ν = 9/7 FQHS becomes weak twice, at n = 1.17 and
1.55, also consistent with the ν = 5/7 FQHS transitions.

It is instructive to compare the transitions we observe
at fractional νCF with the spin-polarization transitions
of other FQHSs at integer νCF . In Fig. 4, we summa-
rize the critical EZ/VC above which the FQHSs between
ν = 1/2 and 3/2 become fully spin-polarized. The mea-
surements were all made on the 60-nm-wide QW. The
x-axis is 1/νCF , and we mark the electron LL filling fac-
tor ν in the top axis. The dotted lines, drawn as guides
to the eye, represent the phase boundary between fully
spin-polarized (above) and partially spin-polarized (be-
low) 2CFs. Note that the system is always fully spin-
polarized at νCF = −1 (ν = 1) [20, 21]. The criti-
cal EZ/VC of FQHSs with integral νCF increases with
νCF and reaches maxima at νCF = −∞ (ν = 1/2 and
3/2). Secondary maxima in the boundaries appear at
νCF = −3/2 (ν = 3/4 and 5/4), and seem to have ap-
proximately the same height as at ν = 1/2 and 3/2.
While Fig. 3 data strongly suggest that we are ob-

serving spin transitions of various FQHSs, there is also
some theoretical justification. It has been proposed that
the enigmatic FQHSs observed at ν = 4/11 and 5/13
in the highest quality samples can be interpreted as the
FQHSs of interacting 2CFs at νCF = +4/3 and +5/3
[3, 4]. A recent theoretical study predicts a transition of
the ν = 4/11 FQHS to full spin polarization in an ideal
zero-thickness 2DES when EZ/VC is about 0.025 [5]. Our
observed transition of the ν = 4/5 (νCF = −4/3) FQHS
appears at EZ/VC ≃ 0.015 to 0.024, in different QWs
with well widths ranging from 65 to 31 nm and corre-
sponding λ/lB ≃ 1.7 to 1.1 [11], consistent with this the-
oretically predicted value.
Another useful parameter in characterizing the origin

of the ν = 4/5 FQHS and its transition are the energy

gaps on the two sides of the transition. We show in Fig.
2(c) the measured excitation gaps for this state at differ-
ent densities in the 65-nm-wide QW. The ν = 4/5 FQHS
transition for this sample occurs at density n ≃ 1.1;
see Fig. 2(a). Before and after the transition, e.g. at
n = 0.86 and 1.64, the ν = 4/5 FQHS has very similar
energy gaps (∼ 0.35 K) although the densities are differ-
ent by nearly a factor of two. Since the FQHS energy
gaps at a given filling are ordinarily expected to scale
with VC ∼ √

n, this observation suggests that the excita-
tion gap at ν = 4/5 is reduced when the FQHS becomes
fully spin-polarized.

Finally we revisit the RIQHSs we observe near ν = 4/5
(see, e.g., Figs. 1(a) and 1(b)). These RIQHSs were in-
terpreted as pinned Wigner crystals [11], and the recent
microwave resonance experiments confirm this interpre-
tation [12]. Moreover, the data in Ref. [11] as well as the
data we have presented here all indicate that, whenever
a transition to a RIQHS occurs, it is initiated by a tran-
sition of the ν = 4/5 FQHS. As we have shown here, the
transition we see for the ν = 4/5 FQHS is a transition to a
fully spin-polarized state of interacting 2CFs. Combining
these observations leads to a tantalizing conclusion: The
RIQHS near ν = 4/5 is a pinned, ferromagnetic Wigner

crystal of 2CFs, as schematically illustrated in Fig. 1(b).
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