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New physics effects in B decays are routinely modeled through operators invariant under the strong and
electromagnetic gauge symmetries. Assuming the scale for new physics is well above the electro-weak scale, we
further require invariance under the full Standard-Model gauge symmetry group. Retaining up to dimension-six
operators, we unveil new constraints between different new-physics operators that are assumed to be independent
in the standard phenomenological analyses. We illustrate this approach by analyzing the constraints on new
physics from rare Bq (semi-)leptonic decays.

Introduction. The exploration of the energy regime of
electro-weak symmetry breaking (EWSB) at the Large
Hadron Collider (LHC) has unveiled a scalar boson [1, 2] re-
sembling the Standard Model (SM) singlet component of the
Higgs doublet and no other particle. If one therefore assumes,
as the experimental evidence suggests, that the scale of new
physics (NP), Λ, is above the EWSB scale an effective field
theory (EFT) built exclusively from SM fields can be used. In
this widespread and fruitful scheme, higher-dimension opera-
tors suppressed by powers of the NP scale encode deviations
of the SM in a generic and model-independent manner [3, 4].
The only requirements imposed on the operators are Lorentz
and SU(3)c × SU(2)L × U(1)Y gauge symmetries.

These simple assumptions lead, as this letter is meant to
show, to phenomenological consequences not only for physics
at the EWSB scale but also for physics well below such scale.
Furthermore, the consequences not only affect the “size” of
the contribution of new physics to low energy processes, but
also the “shape” or correlation among different operators.
These extra constraints in the low energy Lagrangian are due
simply to SU(3)c×SU(2)L×U(1)Y invariance. More specif-
ically, there are three important ways in which the low energy
EFT is further constrained:
(i) The operators must originate in those of an EFT with ex-
plicit electroweak symmetry;
(ii) The coefficients of operators are not all independent, as
they may be related by their origin in the underlying sponta-
neously broken electroweak group; and
(iii) Some of the coefficients of the low energy EFT may be
constrained by seemingly unrelated high energy processes.
The latter occurs, for example, when the low energy opera-
tor arises from integrating out a heavy field, like the Higgs,
from an operator which itself produces effects observable in
the decay of the heavy field.

To illustrate the aforementioned effects we consider rare,
flavor changing-neutral (FCN) B-meson semi- or purely-
leptonic decays, where, to our knowledge, such an analysis
has not yet been carried out fully. The reduced set of observ-
ables that will be studied here allow us to focus on a subgroup
of operators rather than the most general EFT consistent with
electroweak symmetry, which is left for future work. We shall
distinguish between three different scales: i) the NP scale Λ,

ii) the EWSB scale, 〈H†H〉 = v2/2, and iii) the low scale, µ,
in this case of the order of the bottom quark mass. We assume
the following hierarchy of mass scales µ� v � Λ.

Low energy: B-meson semi-leptonic Lagrangian. At en-
ergies around the bottom quark mass, the EFT Lagrangian is
built from the light fields: the SM particle content except the
W and Z bosons, the Higgs boson, and the top quark. In
addition the EFT Lagrangian respects the gauge symmetries
manifest at this scale, namely SU(3)c × U(1)em. As we will
show, not all of the possible operators constructed in this way
are compatible with an effective Lagrangian invariant under
SU(2)L × U(1)Y .

To leading order in GF = 1/(
√

2v2) the effective La-
grangian for ∆B = 1 processes is [5–7]

Leff = −4GF√
2

∑
p=u,c

λps

(
C1Op1 + C2Op2 +

10∑
i=3

CiOi

)
,

(1)
with λps = VpbV

∗
ps. The “current-current” operators, Op1,2,

“QCD-penguins,” O3,...,6, and “chromo-magnetic operator,”
O8, do not contribute to Bs → ll̄ and their contribution to
B → K(∗)ll̄ requires an electromagnetic interaction (they
contribute to the “non-factorizable” corrections, in the lan-
guage of QCD factorization [8]). We therefore focus on the
electromagnetic penguin, O7 and the semileptonic operators,
O9,10, defined as

O7 =
e

(4π)2
mb[s̄σ

µνPR b]Fµν , (2)

O9 =
e2

(4π)2
[s̄γµPLb][l̄γ

µl], O10 =
e2

(4π)2
[s̄γµPLb][l̄γ

µγ5l],

where b, s, l stand for the bottom and strange quarks and a
charged lepton, respectively, Fµν is the photon field strength,
and PR,L = (1± γ5)/2.

In addition, beyond the SM (BSM) physics can generate
chirally-flipped (bL(R) → bR(L)) versions of these operators,
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O′7,...,10, and also four scalar and two tensor operators [9],

O(′)
S =

e2

(4π)2
[s̄PR(L)b][l̄l], O

(′)
P =

e2

(4π)2
[s̄PR(L)b][l̄γ5l],

(3)

OT =
e2

(4π)2
[s̄σµνb][l̄σ

µν l], OT5 =
e2

(4π)2
[s̄σµνb][l̄σ

µνγ5l].

(4)

Note that there are only two possible non-vanishing tensor op-
erators [36]. These, together with those in Eq. (2) and their
chirally-flipped counterparts, constitute the most general basis
for the Lagrangian describing Bs (semi-)leptonic rare decays.
In this construction, the 12 coefficients in the EFT Lagrangian
of these 12 distinct operators are a priori independent. How-
ever, as discussed in the next section, if the NP lies above the
EW scale the number of free coefficients is reduced to 8.

The same effective Lagrangian (and following discussions)
can be applied to b→ d decays by replacing a d-quark for the
s-quark in Eq. (1), and accounting for the difference in CKM
elements by replacing λpd for λps throughout. The Wilson
coefficients are not necessarily the same as in the b→ d tran-
sitions, and comparing the two sets of coefficients would give
information about flavor violation of presumed NP. Similarly,
Wilson coefficients could also depend on the family of the
leptons, which would result in lepton universality violation.

High energy: New Physics above the EWSB scale. If the
operators appearing in the effective Lagrangian are generated
by physics at a scale Λ above the EWSB scale, v � Λ they
must originate from operators manifestly SU(3)c×SU(2)L×
U(1)Y invariant. The fields at our disposal for the con-
struction of such Lagrangian are the chiral fermions qL =
(uL, dL)T , `L = (νL, lL)T , uR, dR , eR, the Higgs doublet
H and covariant derivatives containing gluons, weak-isospin
and hypercharge vector bosons. We will work in the basis in
which the down-type Yukawa matrix is diagonal and write the
quark doublets as qd = (ujLV

∗
jd, dL), qs = (ujLV

∗
js, sL) and

qb = (ujLV
∗
jb, bL).

We restrict attention to BSM operators of dimension 6,
which yield the leading corrections given the hierarchy of
scales assumed. The effective Lagrangian takes the form
LBSM = 1

Λ2

∑
i CiQi. The relevant operators for the study

of rare (semi-)leptonic decays in the Bq system are either
dipole-like,

QdW = g2(q̄sσ
µνbR)τ IHW I

µν , QdB = g1(q̄sσ
µνbR)HBµν ,

Q′dW = g2H
†τ I(s̄Rσ

µνqb)W
I
µν , Q

′
dB = g1H

†(s̄Rσ
µνqb)Bµν ,

(5)

Higgs-current times fermion-current,

Q
(1)
Hq =

(
H† i
←→
D µH

)
(q̄sγ

µqb)

Q
(3)
Hq = H† i(τ I

−→
Dµ −

←−
Dµτ

I)H(q̄sτ
Iγµqb) (6)

QHd =
(
H† i
←→
D µH

)
(s̄Rγ

µbR)

or four-fermion,

Q
(1)
`q = (¯̀γµ`)(q̄sγ

µqb), Q
(3)
`q = (¯̀γµτ

I`)(q̄sγ
µτ Iqb),

Qed = (l̄RγµlR)(s̄γµbR), Q`d = (¯̀γµ`)(s̄γ
µbR),

Qqe = (q̄sγµqb)(l̄γ
µlR), Q`edq = (q̄sbR)(l̄R`),

Q′`edq = (¯̀lR)(s̄Rqb), (7)

where color and weak-isospin indices are omitted and τ I

stand for the Pauli matrices in SU(2)-space. Primed oper-
ators correspond to a different flavor entry of the hermitian
conjugate of the unprimed operator.

This Lagrangian cannot be compared still with that of
Eq. (1); one has to integrate out the heavy degrees of free-
dom, i.e., Z, W , t and H , and run it down to µb. The first
step yields four-fermion and dipole operators as in Eqs. (2, 3).
Remarkably, no new tensor-like operators (4) appear after in-
tegration of W and Z bosons at leading order. By contrast,
new contributions to the coefficients of O(′)

9,10 are indeed gen-
erated by the operators in Eq. (6).

Explicitly, the connection with the Lagrangian of Eq. (1), at
the scale MW is [37], for scalar and tensor type operators:

ClS = −ClP =
4π2

e2λts

v2

Λ2
C`edq,

Cl′S = Cl′P =
4π2

e2λts

v2

Λ2
C ′`edq,

CT = CT5 = 0, (8)

for dipole operators:

C
(′)
7 =

8π2

ybλts

v2

Λ2

(
C

(′)
dB − C

(′)
dW

)
,

and for the current-current type of leptonic operators:

C9 =
4π2

e2λts

v2

Λ2

(
Cqe + C

(1)
`q + C

(3)
`q − (1− 4s2

W )(C
(1)
Hq + C

(3)
Hq)
)
,

C10 =
4π2

e2λts

v2

Λ2

(
Cqe − C(1)

`q − C
(3)
`q + (C

(1)
Hq + C

(3)
Hq)
)
,

C ′9 =
4π2

e2λts

v2

Λ2

(
Ced + C`d − (1− 4s2

W )CHd
)
,

C ′10 =
4π2

e2λts

v2

Λ2
(Ced − C`d + CHd) .

Equation (8) shows explicitly what has been advertised in the
introduction:
(i) Some operators cannot be generated in the EFT (CT =
CT5 = 0).
(ii) There are correlations between nonvanishing coefficients
(CS = −CP and C ′S = C ′P ).
(iii) The contributions to some EFT coefficients may be sub-
ject to constraints arising purely from high energies (e.g.,
Q

(′)
dW , Q(′)

dB , QHq and QHd contribute to flavor-violating Z
and H decays).

The reduction in the number of structures occurs only for
scalar, pseudo-scalar and tensor operators. The reason for
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this reduction is invariance under hypercharge: the tensor-like
operators simply cannot be promoted to be U(1)Y invariant,
and for scalar and pseudo-scalar U(1)Y requires the leptons
to have definite chirality dependent on the b quark chirality.
For the remaining operators the coefficients are independent
linear combinations. However, note that there are additional
correlations between the neutral current and the charged cur-
rent version of the operators that arise from operators involv-
ing doublets. While these play no role directly in FCN lep-
tonic decays of B mesons, they may give rise to additional
constraints on the effects of NP.

Violations to the relations of Eq. (8) of order v2/Λ2 arise
from dimension-8 operators like q̄HbR ¯̀HlR and possibly of
order g2

EW /16π2 from 1-loop matching.
Consequences in B0

q → l+l−. A powerful probe of NP is
the decay B0

q → l+l−. In the SM it is first induced at 1-loop
level and is chirally suppressed. Moreover, the hadronic ma-
trix element is determined fully by B0

q decay constants FBq
,

which are calculated in lattice QCD [14].
The SM predictions for the branching fractions, B, have

been worked out to high accuracy. For the muonic and elec-
tronic modes they currently are [15]:

Bsµ =3.65(23)× 10−9, Bdµ =1.06(9)× 10−10,

Bse =8.54(55)× 10−14, Bde =2.48(21)× 10−15, (9)

where the overline indicates untagged, time-integrated rates
(as required by the sizable width difference in the B̄s − Bs
system, although not for Bd [16]).

The muonic modes have been recently measured by
LHCb [17, 18] and CMS [19], and an average of the results
leads to [20]:

Bexpt

sµ = 2.9(7)× 10−9, Bexpt

dµ = 3.6+1.6
−1.4 × 10−10, (10)

where the Bdµ mode is not statistically significant yet (< 3σ).
For the electronic modes we currently have only upper bounds
at 95% C.L. [21]:

Bexpt

se < 2.8× 10−7, Bexpt

de < 8.3× 10−8. (11)

Useful quantities to compare the theory to are the ra-
tios [16]:

Rql =
Bql(
Bql
)

SM

=
1 +All∆Γ yq

1 + yq

(
|S|2 + |P |2

)
, (12)

where yq = τBq
∆Γq/2, All∆Γ is the mass eigenstate rate

asymmetry [16] and:

S =

√
1−

4m2
l

m2
Bq

CS − C ′S
rql

, P =
C10 − C ′10

CSM
10

+
CP − C ′P

rql
,

where rql =
2ml (mb +mq)C

SM
10

m2
Bq

. (13)

The contributions of C(′)
S and C(′)

P are enhanced by the factor
mB/ml, so below we will neglect the NP in C

(′)
10 for sim-

plicity. The decay rate is only sensitive to the differences

(CP − C ′P ) and (CS − C ′S) so the sums, (CP + C ′P ) and
(CS + C ′S), need to be constrained through other means.

FIG. 1: In the upper panel we show the limits at 68% C.L. and 95%
C.L. on the scalar Wilson coefficients that are induced by the exper-
imental Bqµ in Eq. (10), where the corrections by mixing have been
taken into account. For the electronic modes in the lower panel, we
only show the 95% C.L. allowed regions (11). In both cases the Wil-
son coefficients are understood to be renormalized at µ = mb.

Introducing the hypothesis of this work, we impose (8) in
Eq. (12) and (13) so that now

Rql '
|CS − C ′S |2

r2
ql

+

∣∣∣∣1− CS + C ′S
rql

∣∣∣∣2 , (14)

where we have neglected ys = 0.075(12)% [22] and the phase
space factor for clarity. In addition to the reduction of free
parameters from 4 to 2 in the scalar and pseudo-scalar sec-
tor, now these two parameters enter the decay rate in two or-
thogonal linear combinations. As a result the Bq → l+l−

branching fraction alone bounds all directions in our two pa-
rameter space. In particular, for real Wilson coefficients, the
bound of Eq. (14) defines a circle in parameter space centered

at (CS + C ′S , CS − C ′S) = (rql, 0) with radius |rql|
√
R

expt

ql .
The contour plots in Fig. 1 show these circular bounds with

the radius in the muonic cases determined by |rqµ| ' 0.16.
This shape is in contrast with the bands, experimentally un-
constrained in one direction, that would be obtained in the
standard analysis. Note that improving the experimental ac-
curacy in these modes will only reduce the width of the ring
and that breaking the degeneracy will require other observ-
ables. One attractive possibility is the observableAµµ∆Γ, which
may be obtained by measuring the effectiveBs → µ+µ− life-
time [16].

For the electronic modes, |rqe| ∼ 10−3 and the strength of
the limits in the parameter space is governed by the size of
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R
expt

qe . Hence, improved experimental bounds on the branch-
ing fractions have the potential to probe extremely high ener-
gies through the scalar operators.

To quantify this, the bounds on the scale Λ for the different
decay rates in Eq. (9) can be computed making use of Eq. (8)
and assuming naturalness, namely C(′)

ledq(Λ) ' 1. To compute
these bounds the running is taken into account in the two inter-
vals: i) frommb to∼MW where QCD at 1 loop dominates [9]
and strengthens the bound by ∼ 0.74 , ii) from MW to Λ
using the recently-computed anomalous dimension [10–13],
which gives an extra factor ∼ 0.66. The bounds from Bsµ,
Bdµ, Bse, and Bde, are respectively 78 TeV, 130 TeV, 36 TeV,
and 49 TeV. Note that Bd mesons decays do better at con-
straining new physics due to the CKM suppressed SM back-
ground. In particular, Bde can supersede the present bounds
for a precision of 10−10.

Consequences inB → K(∗)l+l−. The exclusive semilep-
tonicB decays are also powerful flavor laboratories. As 3- and
4-body decays, their angular distributions lead to a rich and
non-trivial phenomenology which could potentially unveil NP
surfacing through various operators (see e.g. Refs. [9, 23–26]
and references therein).

The effects of scalar or tensor operators in B → K(∗)l+l−

have been considered by several authors [9, 23, 24]. The first
immediate consequence of our analysis in these decays is that
tensor operators can be ignored altogether (up to O(v2/Λ2)
corrections). This observation should lead to a considerable
simplification in the theoretical analyses of the angular ob-
servables [9, 24].

The scalar operators contribute to the total decay rates
B → K(∗)l+l−, providing another experimental input to re-
solve degeneracies. In practice, however, any sensitivity is
blurred by the SM contribution which depends on quite un-
certain hadronic form factors [25]. As an example, the coef-
ficient Ic6(q2) in the angular distribution in the K∗ mode is
directly proportional to the combination |CS − C ′S |2, and it
is a null test of the SM [23, 25] but the contribution is sup-
pressed by ml so that the observable is not competitive with
purely leptonic decays.

In the case of theK mode the two angular observablesAFB
and FH [9] are also null tests of the SM and receive contribu-
tions from (CS+C ′S) and (CP +C ′P ). In the standard analysis
these observables provide sensitivity to the orthogonal direc-
tions scanned in Bq → l+l− and in our case could lift the
degeneracies in Fig. 1. However, at low q2 the scalars appear
suppressed by either ml in AFB or by a kinematical factor in
FH [9] [38].

As a final example let us comment on the impact of our
analysis in lepton universality violation in B+ → K+l+l−

decays [27]. Recently the LHCb collaboration [28] has re-
ported a deficit in muonic decays with respect to electronic
ones in the [1, 6] GeV2 bin with a significance of 2.6σ:

RK ≡
Br (B+ → K+µµ)

Br (B+ → K+ee)
= 0.745+0.090

−0.074(stat)±0.036(syst).

(15)

In the SM, RK is given very accurately, RK = 1.0003(1) [9],
since the hadronic contributions cancel in the ratio to very
good approximation. In Ref. [9] possible scenarios with siz-
able scalar operators were shown to produce large effects in
RK . Our analysis shows that the bounds from the fully lep-
tonic decay suffice to exclude the possibility of scalar opera-
tors accounting for (15), since at 95% C.L. we have:

RK ∈ [0.982, 1.007]. (16)

In light of this and the absence of tensors, we conclude that
a large lepton universality violation in RK could be only pro-
duced by the operators O(′)

9 and O(′)
10 . Unfortunately these are

not very well bounded, especially for the electronic case, so
different scenarios of NP could currently explain (15). For ex-
ample one could entertain the possibility of a sizable and neg-
ative effect inC9 affecting only the muonic mode, δCµ9 = −1.
In this scenario one obtains RK ' 0.79. As a side remark, it
is worth emphasizing that such a negative NP contribution to
O9 has been argued to be necessary to understand the current
b→ sµµ data set [30–33].

Conclusions. We have discussed a novel approach to the
study of new-physics effects in the Bq (semi-)leptonic de-
cays. This relies on the assumption that the new dynamics
enter at a scale Λ � v, and it is based on the (tree-level)
matching of the effective weak Lagrangian customarily used
in the phenomenological analyses, LW , to the most general 6-
dimensional Lagrangian invariant under the SM gauge group
(as done, customarily, in the analysis of other weak hadronic
processes like nuclear and neutron β-decays [34, 35]).

As a direct consequence of SU(2)L × U(1)Y invariance,
new constraints correlate the operators in LW . For example,
in rare Bq (semi-)leptonic decays the coefficients of the a pri-
ori four possible scalar operators are reduced to two and the
tensor operators are forbidden. The phenomenology of this
reduced set of operators in Bq → l+l− decays was studied.

The present approach could be extended to other low en-
ergy processes but also combined with EW scale physics to
narrow down possible NP operators. Finally let us remark
that, with the growing experimental data, the type of correla-
tions discussed here is likely to play an important role in the
determination of the nature of the new physics to appear.
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[25] S. Jäger and J. Martin Camalich, JHEP 1305, 043 (2013)
[arXiv:1212.2263 [hep-ph]].

[26] S. Descotes-Genon, T. Hurth, J. Matias and J. Virto, JHEP
1305, 137 (2013) [arXiv:1303.5794 [hep-ph]].

[27] G. Hiller and F. Kruger, Phys. Rev. D 69, 074020 (2004) [hep-
ph/0310219].

[28] R. Aaij et al. [LHCb Collaboration], arXiv:1406.6482 [hep-ex].
[29] F. Beaujean, C. Bobeth and D. van Dyk, arXiv:1310.2478 [hep-

ph].
[30] S. Descotes-Genon, J. Matias and J. Virto, Phys. Rev. D 88, no.

7, 074002 (2013) [arXiv:1307.5683 [hep-ph]].
[31] W. Altmannshofer and D. M. Straub, Eur. Phys. J. C 73, 2646

(2013) [arXiv:1308.1501 [hep-ph]].
[32] F. Beaujean, C. Bobeth and D. van Dyk, arXiv:1310.2478 [hep-

ph].
[33] R. R. Horgan, Z. Liu, S. Meinel and M. Wingate, Phys. Rev.

Lett. 112, 212003 (2014) [arXiv:1310.3887 [hep-ph]].
[34] T. Bhattacharya, V. Cirigliano, S. D. Cohen, A. Filipuzzi,

M. Gonzalez-Alonso, M. L. Graesser, R. Gupta and H. -W. Lin,
Phys. Rev. D 85, 054512 (2012) [arXiv:1110.6448 [hep-ph]].

[35] M. Gonzalez-Alonso and J. Martin Camalich, Phys. Rev. Lett.
112, 042501 (2014) [arXiv:1309.4434 [hep-ph]].

[36] (l̄σµνPRl)(s̄σµνPLb) = (l̄σµνPLl)(s̄σµνPRb) = 0 identi-
cally.

[37] For a complete connection, the coefficients should be previ-
ously run from Λ to MW ([10–13]), this is taken into account
for the numerical bounds on Λ.

[38] The kinematical suppression in FH is lifted in the low-recoil
region [24].


