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Selection of the ground state of the kagomé-lattice XXZ antiferromagnet by quantum fluctua-
tions is investigated by combining non-linear spin-wave and real-space perturbation theories. The
two methods unanimously favor q=0 over

√
3×
√

3 magnetic order in a wide range of the anisotropy
parameter 0 ≤ ∆ . 0.72. Both approaches are also in an accord on the magnitude of the quan-
tum order-by-disorder effect generated by topologically non-trivial, loop-like spin-flip processes. A
tentative S–∆ phase diagram of the model is proposed.

PACS numbers: 75.10.Jm, 75.30.Ds, 75.50.Ee, 75.45.+j

Kagomé-lattice antiferromagnets (KGAFMs) are cen-
tral to theoretical and experimental studies in frustrated
magnets. They host long-sought magnetically disordered
spin-liquids and intriguing valence-bond solids, exhibit
order-by-disorder phenomena, and are dominated by un-
conventional excitations [1–26]. Many of these remark-
able properties take their root in a massive degeneracy of
the ground state of the classical kagomé nearest-neighbor
Heisenberg model. The degeneracy can be lifted by ther-
mal or quantum fluctuations, or by secondary interac-
tions. Because of experimental realizations, order se-
lection by the symmetry-breaking Dzyaloshinskii-Moriya
(DM) terms has been intensely studied [27–35] and so has
been the effect of further-neighbor couplings [2], which
lift the degeneracy within the manifold of classical 120◦

states. Two of such states, the
√

3×
√

3 and the q=0 spin
patterns, are the main contenders for the ground state
from the quasiclassical perspective,[36] see Figs. 1(a,b).

On the other hand, studies of quantum effects have
been concentrated on the Heisenberg case where most
methods offer only limited insight into how the ground
state is selected. In this work, we address the prob-
lem of order-by-disorder (ObD) by quantum fluctuations
in KGAFMs using the XXZ version of the nearest-
neighbor, spin-S model

Ĥ = J
∑
〈ij〉

(
Sxi S

x
j + Syi S

y
j + ∆Szi S

z
j

)
, (1)

where anisotropy is of the easy-plane type, 0<∆<1. It
is important to note that the degeneracy among the 120◦

coplanar states of the classical XXZ KGAFM remains
the same as in the Heisenberg limit, ∆=1. Therefore, by
extending the parameter space without explicitly lifting
degeneracy of the classical ground-state manifold we are
able to provide deeper insight into the quantum ObD
effect. More specifically, we shed light on the mechanism
by which the choice is made between q=0 and

√
3×
√

3
ordered patterns in KGAFMs and present a rare example
of the situation when quantum ObD defies the general
trend and yields the ground state that is different from
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FIG. 1: (Color online) (a)
√

3×
√

3 and (b) q=0 spin config-
urations. Dispersions of spin excitations within the harmonic
approximation for (c) ∆=1, and (d) ∆=0.95.

the one favored by thermal fluctuations.
On the technical side, we take advantage of the fact

that the so-called “flat mode,” the branch of localized
linear spin-wave excitations which has zero energy in
the Heisenberg limit, see Fig. 1(c), becomes gaped for
∆ < 1 with εk ∝

√
1−∆, see Fig. 1(d). Because of

that, a controlled 1/S expansion becomes possible in the
XXZ KGAFM, allowing for a detailed investigation of
the quantum selection of the ordered state [37].

Another method that allows for an effective treatment
of the highly-degenerate frustrated spin systems is the
real-space perturbation theory (RSPT). Applied to the
KGAFMs, it operates directly within the manifold of
classical 120◦ states and, by analyzing terms of various
order of the perturbation, creates an intuitively transpar-
ent real-space hierarchy of effective couplings that are
responsible for the ground-state selection. As we show
below, it is the convolution of the two methods, 1/S ex-
pansion and RSPT, which is especially insightful.
Non-linear spin-wave theory (SWT).—For any ordered

state from the coplanar 120◦ manifold one can rewrite (1)
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FIG. 2: (Color online) Difference of the ground-state energies
(3) of the q = 0 and

√
3 ×
√

3 states, per spin. Upper inset:

energy correction δE(3) for the q= 0 (squares) and
√

3 ×
√

3
(diamonds) states. Dashed line marks the transition. Lower

inset: diagram for δE(3) term in the energy expansion.

in a rotating local basis as

Ĥ = J
∑
〈ij〉

(
∆Syi S

y
j + cos θij

(
Sxi S

x
j + Szi S

z
j

)
+ sin θij

(
Szi S

x
j − Sxi Szj

))
, (2)

where θij=θi−θj . Clearly, it is only the last term in (2)
which is able to distinguish between different 120◦ spin
configurations by virtue of containing sin θij = ±

√
3/2

for the clockwise or counterclockwise spin rotation. This
term corresponds to the non-linear, cubic coupling of
spin-waves and does not contribute to the linear SWT.
Consider the 1/S expansion of the ground-state energy

E = Ecl + 〈H2〉+ 〈H4〉+ δE(3) + . . . , (3)

where the first term is the classical energy O(S2), the
second is the linear SWT correction O(S), and the last
two are the contribution of the quartic and cubic terms,
both O(1). It is easy to see from (2) that quartic terms
are also unable to differentiate between 120◦ structures,
leaving the cubic term as a sole source of the quantum
ObD effect to this 1/S order. The energy correction from
the cubic terms is represented by the diagram in the lower
inset of Fig. 2 and is given by

δE(3) = − 1

6N

∑
νµη

∑
q,k

|V νµηq,k,−k−q|2
ενq + εµk + εη−k−q

, (4)

where ν, µ, η numerate spin-wave branches with harmonic
energies εαk and the cubic vertex comes from the anhar-
monic part of the spin-wave Hamiltonian

Ĥ3 =
1

3!

∑
νµη

∑
q,k

V νµηq,k,−k−q b
†
ν,qb

†
µ,kb

†
η,−k−q + H.c. (5)

As is clear from previous discussion, this vertex has dif-
ferent form for different ordered structures and should be
obtained from the spin-wave expansion for each specific
120◦ spin pattern.

For the linear SWT of the XXZ model (2), we gen-
eralize the approach of [2], which has suggested a two-
step diagonalization procedure consisting of the unitary
transformation of the unit-cell bosons followed by the
Bogolyubov transformation for each mode. With that
we are able to obtain cubic vertices (5) for the q=0 and√

3×
√

3 states in a fully analytic and elegant form [38],
which permit high-accuracy numerical integration in (4)
and allow to study quantum ObD effect. The results of
such calculations are presented in Fig. 2.

Our main result is the quantum selection of the q= 0
state over the

√
3×
√

3 counterpart for anisotropy values
extending from the XY limit, ∆ = 0, to the transition
point ∆c≈0.72235. This is contrary to the common be-
lief that quantum fluctuations follow the same selection
trend as thermal ones.[40] Indeed, the asymptotic selec-
tion of the

√
3×
√

3 magnetic structure by thermal fluc-
tuations for the classical KGAFM in both the Heisenberg
[2, 36, 41] and the XY limits [42–44] shows no change in
the ordering pattern as a function of ∆ in contrast to the
behavior of the quantum model in Fig. 2. Although the
1/S energy correction diverges as (1−∆)−1, signifying a
failure of the expansion for ∆→1, our results leave little
doubt that the

√
3×
√

3 state should remain the ground
state in the entire range ∆c <∆≤ 1. Previously, a self-
consistent spin-wave treatment of the Heisenberg limit [4]
has provided an indirect evidence in favor of the

√
3×
√

3
ground state for S� 1. Here this result is strongly im-
plied by a direct calculation of the ground-state energy.
Lastly, we observe that the energy gain from the quan-
tum ObD effect is only a fraction of 10−3J per spin.
Real-space perturbation theory.—What is the mecha-

nism of quantum selection of the ground state? We ad-
dress this question using the RSPT [45–48]. This ap-
proach divides the Hamiltonian (2) into an unperturbed
part Ĥ0 = h

∑
i (S − Szi ), describing spin fluctuations

in the local field h = 2JS, and perturbation V̂ , which
couples fluctuations on adjacent sites. Then, the stan-
dard perturbation theory is used to calculate quantum
corrections to the classical ground-state energy. The
coupling between spin fluctuations contains four terms
V̂ =

∑
i,j(V̂

ij
1 +V̂ ij2 +V̂ ij3 +V̂ ij4 )

V̂ ij1 = −A+

(
S+
i S

+
j + H.c.

)
, V̂ ij2 = 2A−S

+
i S
−
j , (6)

V̂ ij3 = −Bij δSzi
(
S+
j + S−j

)
, V̂ ij4 = −C δSzi δSzj ,

where we introduce δSzi = S−Szi , A± = J (∆±1/2) /8,

Bij=J sin θij/2, C=J/4, and keep sin θij=±
√

3/2 in V̂3
explicit, see [38] for details. The first three terms in (6)
can be referred to as double spin-flip, spin-flip hopping,
and single spin-flip, the latter being a descendant of the
cubic term (2). As in the 1/S expansion, this is the only
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FIG. 3: (Color online) (a) and (b): schematics of the symme-
try related processes of the 4th order. (c) Topologically non-
trivial path of the 7th order. (d) Magnetization M = 〈S〉/S
vs ∆ in linear SWT for S = 1/2 and S = 5/2, dashed lines.
Solid line, a sketch of M(∆) for the case of DM interaction.
(e) Linear SWT result for M(S,∆).

term which is sensitive to the 120◦ pattern and, therefore,
is the key to the selection of the ground state.

Since every term in the energy expansion corresponds
to a finite cluster of spins coupled by perturbations in
(6) and since the classical ground state is a vacuum
for spin flips, contributions that are relevant to lifting
the ground-state degeneracy must begin and end with a
double spin-flip and must also contain a pair of single
spin-flips. The first process of such kind appears in the
fourth order, an example given by the operator sequence
V̂ 12
1 → V̂ 13

3 → V̂ 12
3 → V̂ 13

1 shown in Fig. 3(a). The respec-
tive energy shift depends on the mutual orientation of S2

and S3 because δE(4)∝sin θ12 sin θ13. However, an obvi-
ous symmetry leaves the degeneracy intact at this order
of expansion, because for any coupling between S2 and
S3 there is a “mirror” process that couples identically S2

with S3′ , see Fig. 3(b), providing the same energy gain
to both the

√
3×
√

3 and the q=0 states.

Generalizing this trend, we conclude that the
degeneracy-lifting terms must correspond to linked clus-
ters of a non-trivial topology, with the smallest clus-
ter consisting of a hexagon loop and generated by the
seventh-order process depicted in Fig. 3(c). One example
of the operator sequence is given by V̂ 24

1 → V̂ 21
3 → V̂ 13

3 →
V̂ 12
1 → V̂ 56

1 → V̂ 46
1 → V̂ 35

1 and contains five double-flips
and two single-flips. This type of processes yields the only
relevant seventh-order contribution at ∆=1/2, for which
the amplitude A− of the spin-flip hopping V̂2 (6) vanishes
together with the rest of the degeneracy-lifting terms.
The energy correction at ∆ = 1/2 corresponds to an ef-
fective antiferromagnetic coupling between the second-
neighbor spins S2 and S3, δE(7) ∼ + sin θ12 sin θ13 [38],

favoring the q=0 state.
Moreover, one can show that for ∆< 1/2 all relevant

seventh-order processes have the same sign and also favor
the q = 0 state. For ∆> 1/2, some of the terms switch
sign. This implies that the transition to the

√
3 ×
√

3
state can take place only at some ∆c>1/2, in agreement
with the the non-linear SWT result ∆c≈0.72.

There are close parallels between the non-linear SWT
and the real-space approach. Although the degeneracy-
lifting contribution in the RSPT is of the seventh order,
it is still of the second order in cubic terms, same as in the
non-linear SWT (4). More importantly, the high order
of the relevant perturbation processes explains the small-
ness of the quantum ObD effect. Essentially, the RSPT
is an expansion in 1/z, where z is the coordination num-
ber, which gives the right order-of-magnitude estimate
for the seventh-order effect δE ∼ 10−4J . A more care-
ful calculation using the actual perturbation terms in (6)
and combinatorial factors of different processes of sev-
enth order gives a similar answer [38]. Our conclusion on
the topological nature of the effective exchange respon-
sible for the ground-state selection makes it extremely
unlikely that a state with an extended unit cell can com-
pete with the ones considered in this work.
Phase diagram.—We now construct the phase diagram

of the XXZ KGAFM (1) as a function of anisotropy
∆ and spin S. For that, we calculate the ordered mo-
ment within the harmonic SWT approximation, 〈S〉 =

S−〈a†iai〉, to map out the extent of the magnetically or-
dered state. Because of the degeneracy of classical 120◦

states, harmonic spin-wave spectrum is identical in all
of them and yields the same result. Here we simply esti-
mate stability of the Neél order with respect to the “diag-
onal” quantum fluctuation for a given state. While this
analysis completely neglects the “off-diagonal” tunneling
within the manifold, such processes should be exponen-
tially suppressed for larger spins [49].

Figure 3(d) shows magnetization M = 〈S〉/S vs ∆ for
two representative values of the spin. Neél state is sta-
bilized already at rather small 1−∆′c≈ 0.05 for S = 1/2
and 1−∆′c≈ 0.002 for S= 5/2. Considering spin S as a
continuous variable, we plot M(S,∆) in Fig. 3(e) where
dashed lines are the same as in Fig. 3(d) and the color is
for the magnitude of M . The M=0 curve is the Neél or-
der phase boundary in the S−∆ plane, see also Fig. 4(a).
A simple algebra yields an asymptotic expression for it,
1−∆′c≈(96S2)−1, which agrees exceedingly well with the
results of numerical integration [38].

In Fig. 3(d) we also sketch results of the Exact Diag-
onalization (ED) for S = 1/2 KGAFM with the out-of-
plane DM term [33], which selects q = 0 ground state
but yields harmonic Hamiltonian identical to the XXZ
case with rescaling 1−∆⇔

√
3Dz [31, 37, 50]. Since the

DM term suppresses tunneling processes within the man-
ifold, it is reasonable to compare ED with SWT results to
evaluate the accuracy of the SWT Neél order boundary.
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and quantum ObD near the Heisenberg limit are suggested.
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For the latter, one can see a qualitative agreement with
ED and a quantitative exaggeration of the extent of the
ordered phase, expected for the SWT approach.

We now combine our SWT results in Fig. 4(a), which
shows the S−∆ phase diagram. The solid line is the
linear SWT result for the Neél order boundary 〈S〉= 0,
see also Fig. 3(e), and the dashed line is its asymptotic
approximation mentioned above. As we discussed, the
harmonic treatment gives a good qualitative idea for the
phase boundary between magnetically ordered and dis-
ordered phases, but does not specify which of the 120◦

Neél states is chosen. We infer this information from the
non-linear SWT results in Fig. 2 and complete our per-
turbative S−∆ phase diagram by adding the boundary
between q=0 and

√
3×
√

3 states.

There are two trends that are not included in this phase
diagram and are beyond the methods used in the current
work. The non-linear SWT approach is a perturbative
treatment of the quantum ObD effect, which fails in the
vicinity of the Heisenberg limit. However, it is known
that quantum ObD should extend Neél-ordered region of
the phase diagram to the ∆=1 axis for larger spin values.
It has been argued by the self-consistent version of SWT
[4] that the

√
3×
√

3 is the ground state of the Heisenberg
KGAFM for S�1.

The other trend is the suppression of the Neél order
by quantum fluctuations for smaller spins, leading to the
growth of the non-magnetic region of the phase diagram.
As was argued recently by several groups using numerical
approaches [51–53], the S=1/2 XXZ KGAFM remains
in a spin-liquid state for the entire range of ∆≤ 1. Our
results for S=1/2 case in Fig. 4(a) are, therefore, inade-
quate, most likely because of the neglect of the tunneling
between different states in 120◦ manifold.

In order to capture some of these trends we modify the

mean-field condition 〈S〉=0 used above by including the
self-consistently renormalized spin-wave dispersion of the
“flat mode” for the Heisenberg limit from [4]. While this
is not an entirely rigorous procedure, it should provide a
reasonable estimate on the extent of the region of stabil-
ity due to quantum ObD for ∆=1. The resulting values
for the “critical” Sc, above which the system orders mag-

netically, come out as Sq=0
c ≈ 0.17 and S

√
3×
√
3

c ≈ 0.18.
While, obviously, this is another case of quantitative ex-
aggeration of the extent of the ordered phase by an SWT
approach, this estimate makes it extremely unlikely that
the Heisenberg KGAFM with S&1 will be magnetically
disordered. In fact, recent numerical work [17] has in-
dicated that the Heisenberg KGAFMs with S ≥ 3/2 all
order in a

√
3×
√

3 configuration.

Combining these trends, we propose a tentative S−∆
phase diagram of the nearest-neighbor XXZ KGAFM
model in Fig. 4(b). In the Heisenberg limit, for larger
values of spin the ground state is

√
3 ×
√

3 state, which
switches to q= 0 upon reducing ∆. For S = 1 the same
trajectory begins with the magnetically disordered state
and the system enters directly into the q = 0 state. As
shown by the recent numerical results, S = 1/2 remains
quantum disordered for the entire range of ∆. Finally,
there may, or may not, exist an intermediate value of spin
for which Heisenberg limit is already in the q=0 domain
and no transition occurs versus ∆. While predictions of
this work are firm for the larger values of spin, the ulti-
mate answer on the exact sequence of phases for smaller
spins should be sought via numerical approaches.

Conclusions.—By advancing the non-linear 1/S ex-
pansion and the real-space perturbation theory we in-
vestigated quantum order-by-disorder selection of the
ground state of the nearest-neighbor XXZ antiferromag-
net on the kagomé lattice. We demonstrated that the
order selection is generated by topologically non-trivial
tunneling processes, presented a strong evidence of the
rare case of quantum and thermal fluctuations favoring
different ground states, proposed a tentative S−∆ phase
diagram of the model, and suggested further studies.
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[46] M. T. Heinilä and A. S. Oja, Phys. Rev. B 48, 7227

(1993).
[47] B. Canals and M. E. Zhitomirsky, J. Phys.: Condens.

Matter 16, S759 (2004).
[48] D. L. Bergman, R. Shindou, G. A. Fiete, and L. Balents,

Phys. Rev. B 75, 094403 (2007).
[49] J. von Delft and C. L. Henley, Phys. Rev. B 48, 965

(1993).
[50] R. Ballou, B. Canals, M. Elhajal, C. Lacroix, and A.

Wills, J. Magn. Magn. Mat. 262, 465 (2003).
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