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Using relative entropy, we derive bounds on the time rate of change of geometric entanglement
entropy for any relativistic quantum field theory in any dimension. The bounds apply to both mixed
and pure states, and may be extended to curved space. We illustrate the bounds in a few examples
and comment on potential applications and future extensions.

MOTIVATION AND INTRODUCTION

Recently, entanglement entropy has become an impor-
tant theoretical tool for probing quantum physics in di-
verse situations. Of especial interest is the geometric
entanglement entropy, SV , associated with some spatial
region, V . To wit, the von Neumann entropy of the re-
duced density matrix found by tracing out the degrees of
freedom associated with the complementary region, V̄ .1

In this paper, we are interested in how causality and lo-
cality bound the rate of change of entanglement entropy,
dS
dt , for excited states in a relativistic quantum field the-
ory. As is now well-known, the geometric entanglement
entropy is UV divergent in the vacuum, with the lead-
ing divergence proportional to the area of ∂V . Because
of this UV sensitivity, one might question whether there
are any interesting bounds at all; however, entropy dif-
ferences are frequently finite for reasonable states, and
therefore one should expect that dS

dt is UV finite for rea-
sonable states. This is also supported by some previous
explicit calculations, cf. [2–5].

There are two relevant bodies of research in the lit-
erature. Firstly, there are bounds on dS

dt for finite-
dimensional nonrelativistic quantum mechanical sys-
tems. The most relevant to us is the proof of the small
incremental entangling (SIE) conjecture in [6], building
on work in [7]. The SIE conjecture states that for a four-
part system aABb evolving with Hamiltonian of the form
H = HaA + HbB + HAB ,2 the maximum growth of the
entanglement entropy of aA is bounded [7]:

dSaA
dt

∣∣∣∣
max

≤ k ‖HAB‖ log d d = min(dA, dB), (1)

where k is an order unity constant, ‖HAB‖ is the operator
norm of the interacting Hamiltonian, and the maximum
is taken over all states. This can be used to argue that
if one state obeys the area law, then all adiabatically
connected states do as well [6, 7]; for a lattice system

1 We do not worry about issues associated with the ability to de-
compose the Hilbert space into a tensor product, H = HV ⊗HV̄ .
See [1], for a recent discussion.

2 Systems a and b are called ancilla, since they do not directly
interact with each other.

log d ' A log ds, where ds is the dimension of each lattice
site’s Hilbert space and A is the area measured in lattice
units.

Unfortunately, it is difficult to directly apply this to
quantum field theory, since even in lattice QFT the per-
site Hilbert space is infinite dimensional.3 Moreover,
Lorentz invariance would enter into this argument only
indirectly in the form of the Hamiltonian. Finally, let
us note that there are states for which dS

dt is UV diver-
gent [9–11], and thus we expect that this probably is not
even the right starting point. These examples have di-
vergent stress tensors Tµν , and since the accessible phase
space grows with energy scale, it is perhaps not surprising
that dS

dt diverges.
The second body of literature concerns fundamental

relativistic bounds on the transmission rate of classical
information—[12] gives an extensive discussion. In so far
as the von Neumann entropy is the quantum analogue of
the classical Shannon entropy, and that many bounds on
classical information carry over to analogous bounds on
quantum information [13], it is natural to ask whether
these bounds have quantum anologues as bounds on dS

dt .
The most important bound for us derives from the Beken-
stein bound [14]:

H ≤ 2πER

~c
, (2)

where H is the thermodynamic entropy, E the energy of
some object that can be circumscribed by a radius R ball.
While this bound originated from black hole thermody-
namics, it is supposed to be valid for any system one
can throw into a black hole. If one considers informa-
tion transmission via material transport, then one finds
that [15]

İ ≤ 2πE

~
, (3)

where İ is the classical communication rate measured in
“nats” per unit time.4

3 Although see [8] for a regularization scheme that uses a finite
dimensional Hilbert space.

4 A nat is (ln 2)−1 ≈ 1.44 bits.
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Unfortunately, the precise range of applicability and
validity of the Bekenstein bound is obscured by ambigu-
ities in defining all three related quantities: H, E, and
R. The original argument for the bound has also been
challenged [16, 17]; see [18, 19] for recent defenses of the
bound.

Fortunately, positivity of relative entropy provides an
apodictic quantum analogue of the Bekenstein bound,
which is not plagued by the same ambiguities [20, 21].5

Since the original Bekenstein bound immediately led to
a bound on the transmission of classical information, one
should guess that the new refined version should imply a
bound on dS

dt . In fact, the calculation is not as straight-
forward as the classical case, because we must carefully
formulate bounds that subtract off contributions from
the vacuum. Instead of using the positivity of relative
entropy, we primarily use the monotonicity property.

DERIVATION

Causal Domains

We begin our derivation by first noting that we
are working with a relativistic QFT in d-dimensional
Minkowski space. We are interested in the entanglement
entropy of a region V as a function of t. Let us consider
evaluating dS

dt as usual in a limiting procedure via

dSV (t)

dt
= lim
δt→0

SV (t+ δt)− SV (t)

δt
. (4)

Since entropy differences are finite for reasonable states,
we expect this to be finite for “nice” states. We spend
most of our effort manipulating the entropy difference in
the numerator.

Let Σt denote the spatial slice at time t, so that
V ⊂ Σt. In this language, V ′ ⊂ Σt+δt is the time trans-
lation of V and dS

dt = limδt→0(SV ′ −SV )/δt . The causal
domain of V , D(V ) = D+(V ) ∪ D−(V ), is given by the
set of events for which either the past or future light-
cone intersects Σt as a subset of V . The entanglement
entropy SV more correctly is a function of D(V ), since
changes in the slicing Σt that keep ∂V fixed effect uni-
tary transformations on the density matrix and leave SV
invariant.

Thus, we can deform the spatial slices inside ∂V or out-
side ∂V at the two times without changing the answer.
It seems convenient to deform the two slices as shown
in Figure 1. We decompose the slices into an invariant
spatial region B, followed by two (in the limit) null re-
gions C and D, and another invariant spatial region E.

5 In [22] another related inequality, which we do not find useful
here, was called a “Bekenstein bound”.

The total state on BCDE and BC ′D′E will be pure if
the total system is in a pure state. This slightly singu-
lar evolution6 gives us two states related by a unitary
transformation that acts only on the the CD space:

|ψBC′D′E〉 = UCD |ψBCDE〉 . (5)

The original density matrices for V , ρV and ρV ′ , are re-
lated by unitary transformations to

ρV = U1ρBCU
†
1 ρV ′ = U2ρBC′U

†
2 . (6)

Hence, the entropy is the same. Note that the transfor-
mation from ρBC to ρBC′ looks like a quantum operation
that depends on the state of C. The regions B and E
seem to play the role of ancilla, although keep in mind
that we are going to be taking the limit as δt → 0 and
these regions all depend on δt.

Formally, we can define the above regions as follows:

C = ∂D+(V ) ∩ D−(V ′), C ′ = ∂D−(V ′) ∩ D+(V )

D = ∂D+(V̄ ) ∩ D−(V̄ ′), D′ = ∂D−(V̄ ′) ∩ D+(V̄ )

B ⊂ D−(V ′) ∩ D+(V ), ∂B = ∂D−(V ′) ∩ ∂D+(V ).

(7)

The various regions are illustrated in Figure 1 for the
half space. We now need to bound SBC′ − SBC in the
limit of small δt. Note these definitions suggest a clear
generalization to curved background metrics.

V

V ′

V̄

V̄ ′

δ t
B

C

C′

D

ED′

FIG. 1. Entanglement entropy is invariant under different
spatial slicings that preserve the causal domain. Thus, we
may deform the evolution from SV to SV ′ into evolution from
SBC to SCBC′ as shown above for the half space. This isolates
all of the interesting dynamics into a δt-size “diamond”.

Relative Entropy

Recently, it was pointed out that the relative entropy
furnishes a more precise version of the Bekenstein bound

6 See the recent paper [23], for some interesting results and sub-
tleties related to null surfaces.
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[21]. Recall that the relative entropy is a measure of the
distinguishability of a density matrix ρ from a density
matrix σ given by7 [13]

S(ρ‖σ) = tr ρ log ρ− tr ρ log σ. (8)

Note the asymmetry between ρ and σ.
The relative entropy satisfies two inequalities [13] that

are important for our purposes. First, Klein’s inequality:
S(ρ‖σ) ≥ 0 with equality if and only if ρ = σ. Sec-
ond, the relative entropy monotonically decreases under
partial tracing: S(ραβ‖σαβ) ≥ S(ρα‖σα). Heuristically,
decreasing the number of degrees of freedom one can ac-
cess decreases distinguishability.

As noted in [21], if we write σ = Ne−K ,8 then the
relative entropy can be cleverly rewritten as

S(ρ‖σ) = ∆〈K〉 −∆S, (9)

where ∆ indicates the difference of the quantity when
evaluated in state ρ from state σ. We will always take
σ to be the reduced density matrix one gets from the
vacuum, for which K is the modular Hamiltonian. Then
the nonnegativity of the relative entropy implies an up-
per bound on the regulated (vacuum-subtracted) entropy
∆S,

∆S ≤ ∆〈K〉. (10)

In the cases where we understand the modular Hamilto-
nian K, this bears a remarkable similarity to the original
Bekenstein bound [21].

Bounds

We can now use the monotonicity property of relative
entropy for the regions defined above. First note that
the monotonicity condition S(ρBCD‖σBCD) ≥ S(ρB‖σB)
implies

∆SBCD −∆SB ≤ ∆〈KBCD〉 −∆〈KB〉. (11)

We also have an equivalent bound for the complementary
regions:

∆〈KE〉 −∆〈KCDE〉 ≤ ∆SE −∆SCDE (12)

We want to relate the LHS of the first inequality to the
RHS of the second. If the total state of the QFT is pure,
then the two quantities are equal since S = S̄ for a pure
state; but if the total state is mixed, for instance thermal,
then we have to work a little harder. First note that
strong subadditivity (SSA) of entanglement implies

SE − SCDE ≤ SBCD − SB . (13)

Unfortunately, SSA does not directly apply to the regu-
lated entanglement entropy. In this case, however, purity
of the vacuum implies

Svac
E − Svac

CDE = Svac
BCD − Svac

B , (14)

and therefore

∆SE −∆SCDE ≤ ∆SBCD −∆SB . (15)

This allows us to write

∆〈KE〉 −∆〈KCDE〉 ≤ ∆SE −∆SCDE

≤ ∆SBCD −∆SB ≤ ∆〈KBCD〉 −∆〈KB〉 (16)

Interestingly, this inequality holds as long as either ρ or
σ come from a pure state. Dividing by δt and taking δt
to zero, this becomes an upper and lower bound on the
normal derivative of the regulated entanglement entropy
in terms of normal derivatives of modular hamiltonians.

Monotonicity implies

S(ρB‖σB) ≤ S(ρBC‖σBC) ≤ S(ρBCD‖σBCD) (17)

together with

S(ρB‖σB) ≤ S(ρBC′‖σBC′) ≤ S(ρBCD‖σBCD), (18)

as well as the equivalent relations for the complementary
region. Judicious use of the inequalities allows us to write

S(ρBC′‖σBC′)− S(ρBC‖σBC) ≥ S(ρB‖σB)− S(ρCDE‖σCDE)−∆〈KBC〉+ ∆〈KDE〉 (19a)

S(ρBC′‖σBC′)− S(ρBC‖σBC) ≥ S(ρE‖σE)− S(ρBCD‖σBCD) + ∆〈KBC′〉 −∆〈KD′E〉. (19b)

7 We use S(·‖·) instead of S(·|·) to distinguish the relative entropy
from the conditional entropy.

8 The normalization N can be fixed by demanding σ have unit
trace.
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While the two inequalities hold separately, it is conve-
nient to add them to find

2[S(ρBC′‖σBC′)− S(ρBC‖σBC)] ≥
∆〈KBC′〉 −∆〈KD′E〉 −∆〈KBC〉+ ∆〈KDE〉
+ ∆〈KB〉 −∆〈KCDE〉 −∆〈KBCD〉+ ∆〈KE〉

+ [∆SBCD −∆SE + ∆SCDE −∆SB ]. (20)

The last term in brackets we can drop since it is positive
definite from (16). Using the same techniques, we can
find an upper bound as well:

2[S(ρBC′‖σBC′)− S(ρBC‖σBC)] ≤
∆〈KBC′〉 −∆〈KD′E〉 −∆〈KBC〉+ ∆〈KDE〉
−∆〈KB〉+ ∆〈KCDE〉+ ∆〈KBCD〉 −∆〈KE〉. (21)

Let us define the time and normal derivatives as

dS

dt
=

d∆S

dt
= lim
δt→0

SBC′ − SBC
δt

(22a)

d∆S

dx⊥
= lim
δt→0

∆SBCD −∆SB
δt

(22b)

d∆S̄

dx⊥
= − lim

δt→0

∆SCDE −∆SE
δt

, (22c)

with the obvious parallel definitions for Ks. Note that
time translation invariance of the vacuum means that the
vacuum subtraction drops out from the time derivatives;
this is not true for the normal derivative since the vac-
uum entanglement is not invariant under increases in the
region size. Also, note the x⊥ is oriented outward from
V .

The normal derivative defined in (22) deserves some
explication. For an arbitrary region at constant t with a
smooth boundary dx⊥ is a normal shift of the boundary.
To be precise, if we consider some F which is a functional
of the entangling surface parametrized by xµ(sa), with
µ = 0, . . . , d− 1, a = 1, . . . d− 2 then we have

dF

dx⊥
≡
∫

dd−2s
δF

δxµ(s)

ωµν t̂ν
|ω| , (23)

with t̂µ being the unit time vector, and ωµν =

εµνρ1...ρd−2

∂xρ1

∂s1 . . . ∂x
ρd−2

∂sd−2 . With this notation, Equa-
tion (16) becomes

d∆〈K̄〉
dx⊥

≤ d∆S̄

dx⊥
≤ d∆S

dx⊥
≤ d∆〈K〉

dx⊥
, (24)

and the two inequalities (20) and (21) become upper and
lower bounds on dS

dt :

dS

dt
≥ 1

2

d

dt

(
∆〈K〉+ ∆〈K̄〉

)
− 1

2

d

dx⊥

(
∆〈K〉 −∆〈K̄〉

)
dS

dt
≤ 1

2

d

dt

(
∆〈K〉+ ∆〈K̄〉

)
+

1

2

d

dx⊥

(
∆〈K〉 −∆〈K̄〉

)
,

(25)

where note that d(K−K̄)
dx⊥

is nonnegative from (24). In
fact, there are many other bounds one can derive from
monotonicity; however, in practice these seem to be the
tightest bounds on dS

dt . These bounds hold universally for
any unitary Lorentz invariant theory, but for the cases in
which the modular Hamiltonian is local and known, we
may write them directly in terms of the stress tensor and
simplify them further. We shall now consider the two
better known cases in turn.

ILLUSTRATION

The Half-Space

In our first example the region V is the half-space
x1 < X. It is a quite general result [24, 25] that for
this geometry the modular hamiltonian corresponding to
the vacuum state necessarily becomes the boost charge.
That is,

∆K = 2π

∫
x1<X

dd−1x (X − x1)T 00(t, ~x), (26a)

∆K̄ = 2π

∫
x1>X

dd−1x (x1 −X)T 00(t, ~x). (26b)

A simple computation yields

d〈K〉
dt

= −2πP 1 d〈K̄〉
dt

= 2πP̄ 1

d∆〈K〉
dX

= 2πP 0 d∆〈K̄〉
dX

= −2πP̄ 0

(27)

with P 1 the momentum along x1 of the half-space, P 0 its
energy, along with P̄ 0 and P̄ 1 the energy and momentum
of its complement. Defining the total energy ET = P 0 +
P̄ 0 and total momentum P 1

T = P 1 + P̄ 1, the bounds
become

−2πP 1+π(P 1
T−ET ) ≤ dS

dt
≤ −2πP 1+π(P 1

T+ET ) (28)

Note the qualitative similarity with the classical
bound (3).

The Ball

Now consider the case where the region V is the ball of
radius R centered at the origin. If we are dealing with a
conformal field theory, we may use a conformal mapping
from the Rindler wedge onto the causal development of
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the ball to obtain the modular hamiltonian [26, 27],

∆K = π
(
RP 0 −K0/R

)
= π

∫
r<R

dd−1x
R2 − r2

R
T 00(t, ~x) (29)

∆K̄ = −π
(
R P̄ 0 − K̄0/R

)
= π

∫
r>R

dd−1x
r2 −R2

R
T 00(t, ~x). (30)

Notice that for r ' R we recover the result of the previous
section. As before we can use conservation of the stress-
tensor to obtain

d〈K〉
dt

= −2π

R
D,

d〈K̄〉
dt

=
2π

R
D̄

d∆〈K〉
dR

= πP 0 + πK0/R2,

d∆〈K̄〉
dR

= −πP̄ 0 − πK̄0/R2,

(31)

with D the dilatation charge. In this way the bounds
become

− 2π

R
D +

π

2

(
2DT

R
− ET −

K0
T

R

)
≤ dS

dt
≤ −2π

R
D +

π

2

(
2DT

R
+ ET +

K0
T

R2

)
(32)

We can imagine increasing the radius of the sphere and
simultaneously translating it to obtain the half-space. In
this limit we have

D → RP 1, K0
T → R2ET , (33)

and we recover the bounds (28).

CONCLUSION

We have derived bounds on the entangling rate valid
for any unitary Lorentz invariant quantum field theory in
any dimension. We shall not show it here, but we have
checked they are satisfied in all cases where we were able
to easily test them. The bound can be thought of as
a quantum version of the structurally similar bound on
classical information in (3).

As it stands, our bounds hold even for theories without
a local stress-tensor—such as defect or boundary CFTs.
This goes some way to explaining why our bounds involve
global charges even when the modular hamiltonian has a
local expression. But it also suggests these bounds can
be made stronger. For instance, considering a distant
perturbation that increases the total energy, we expect
that dS

dt should vanish until signals from the perturbing
event could possibly reach the region, at least for local
field theories. Unfortunately, our bound does not seem to
account for this aspect of causality, since independently

of distance these perturbations still affect global charges
such as total energy.

One idea for improving the bounds is to focus our
attention on the dynamics inside the small causal dia-
mond at the boundary of the causal developments of two
Cauchy slices separated by a small δt, such as the dia-
mond bounded by regions C ,C ′ ,D, and D′ in Figure 1.
In this small region, we are probing the UV dynamics
of the theory. Assuming a free UV fixed point, then it
seems that to leading order the process can only be a
“swap gate”: D → C ′ and C → D′. Using this should
be enough to derive a stronger, local bound. And yet,
we should offer a word of caution: simple dimensional
analysis seems to preclude a linear and local bound, at
least for the half-space geometry, unless we are willing to
introduce some cutoff dependence; although something
non-linear such as∣∣∣∣dSdt

∣∣∣∣2 ≤ d2K

dtdx
'
∫
∂V

T 00. (34)

is perfectly fine. In fact a bound on classical informa-
tion very similar to the above appears in the literature;
see [12], and references therein. Let us also note, one may
derive a bound that maximizes over the Hilbert space like
that in (1) by using Bousso’s covariant entropy bound [28]
as a cutoff; however, such a bound, being in Planck units,
would have limited utility.

Another possibility is to consider bounds on the sec-
ond time derivative. If we consider the relative entropy
between states at times t and t+ δt it is easy to derive

dS

dt
=

d〈K〉
dt

,
d2S

dt2
≤ d2〈K〉

dt2
(35)

Unfortunately, K here is the modular hamiltonian for
the system in the state at time t, which is inaccessible
in general. We have also tried an approach in the same
lines as those in this paper, by considering three closely
spaced Cauchy slices, and using monotonicity of relative
entropy. However, and quite generally, we were not able
to find any such bound.

One obvious extension of our work here is to examine
what the bounds imply for holographic entanglement en-
tropy [29–31]. The bound, or a suitable extension of it
for curved space, may have implications for black hole
evaporation and the recent black hole entanglement cri-
sis [32–36]. As in the discussion of [6, 7], we may also use
the bound to tell us about entanglement in the vacuum
of adiabatically connected theories.

This paper benefited from discussions with C. Asplund,
B. Chowdhury, M. Headrick, A. Maloney, and B. Schwab.
SGA and MFP are supported by DOE Grants DE-
SC0010010-Task A and DE-FG02-11ER41742, respec-
tively.
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