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Q-balls are non-topological solitonic solutions to a wide class of field theories that possess global
symmetries. Here we show that in these same theories there also exists a tower of novel composite
Q-ball solutions where, within one composite Q-ball, positive and negative charges co-exist and swap
at a frequency lower than the natural frequency of an individual Q-ball. These charge-swapping
Q-balls are constructed by assembling Q-balls and anti-Q-balls tightly such that their nonlinear
cores overlap. We explain why charge-swapping Q-balls can form and why they swap charges.

Many field theories have non-linear, extended, stable
solutions, known as solitons. Some solitons are called
“topological defects”, as their existence is implied by
nontrivial topological mappings between the coordinate
space and the field space; for excellent reviews see [1, 2].
Q-balls belong to another class of soliton that are time-
dependent but non-dissipative, whose stability is guaran-
teed by the existence of Noether charges associated with
some continuous global symmetries [3, 4].

Consider the simplest case of a complex scalar field Φ
with U(1)-symmetric Lagrangian

L = −∂µΦ∂µΦ̄− V (φ) , (1)

where Φ = (φ1 + iφ2)/
√

2 and φ =
√
φ21 + φ22, φ1 and φ2

being real fields. A particle of this field has a conserved
charge, denoted as Q, associated with the U(1) symme-
try. A Q-ball is a lump of coherent particles, i.e., a lump
of Q charges, whose classical configuration is described
by Φ = ϕ(r)eiωt, where r is the radius from the center of
the ball, ϕ(r) is a real monotonically decreasing function
and ω is the real constant angular velocity in the internal
field space. Similarly, an anti-Q-ball is a lump of coherent
anti-particles with negative charges. Coleman has shown
that isolated Q-balls exist and are a preferred, stable
configuration for a large class of potentials that “open
up” away from their minimum [4]. Assuming, without
loss of generality, that the potential has its minimum
at V (0) = 0 and the perturbative mass squared around
the vacuum, V ′′(0), is positive, the “open-up” condition
requires that the minimum of 2V (φ)/φ2 be at some φ
away from 0 [4]. This condition can be interpreted as the
energy per particle in a Q-ball being smaller than the
perturbative mass, thus implying that a Q-ball is stable
against particle emission.

Q-balls are found in several areas of physics, for ex-
ample, phase transitions in the early universe. They ex-
ist in supersymmetric extensions of the Standard Model,
where there are typically plenty of flat directions in the
scalar potential where the baryon or lepton number is
conserved, and Affleck-Dine condensates can form along
these directions [5, 6], which can then fragment into Q-
balls [7] (see [8, 9] for a review). The fragmentation

can in turn produce a stochastic gravitational wave back-
ground [10] with a characteristic multi-peak structure in
the power spectrum [11]. Q-balls may account for dark
matter [7–9], which makes up one quarter of the energy
budget in the current universe. Condensed matter sys-
tems in the laboratory can also give rise to Q-balls [12].
An explicit example has been realized experimentally by
Bunkov and Volovik in superfluid 3He-B, in which the
coherent precession of magnetization of the superfluid is
described by a magnon condensate and the order param-
eter of the condensate plays the role of the U(1) scalar
field [13].

While the single Q-ball solution has the simple form
Φ = ϕ(r)eiωt with ϕ(r) simply obtained from solving
an ODE, multi-Q-ball solutions, or Q-ball interactions,
are generally rather complicated. Some interesting phe-
nomena, such as the phase dependence of forces between
Q-balls, charge transfer during collisions and Q-ball fis-
sion and fusion, have been revealed [14–16], but overall
this is a largely under-explored area.

In this Letter, we describe a new exciting phenomenon
in Q-ball interactions: A Q-ball and an anti-Q-ball can
form a bound state that has the fascinating property that
the opposite charges of the two Q-balls swap at a fre-
quency lower than the natural oscillation frequency of
each constituent Q-ball. We refer to these new objects as
charge-swapping Q-balls (CSQs). Furthermore, we can
build a whole tower of higher rank CSQs with more Q-
balls and anti-Q-balls – see Fig. 5 for a few simple ex-
amples. Thus, in this way, we can construct a new class
of non-linear localized solutions in a field theory where
single Q-ball solutions exist.

Although we have constructed CSQs for other poten-
tials, the numerical results in this Letter are presented
for the running mass potential

V (φ) =
1

2
m2φ2

[
1 +K ln

(
φ2

2M2

)]
, (2)

with K = −0.1 and M = 10m as the fiducial parame-
ters. This is a typical effective potential taking into ac-
count the renormalization effects on the soft mass term
in supersymmetric models [9, 17], so the Q-balls in this
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potential may have a physical bearing in early universe
phase transitions. Although this potential is unbounded
from below when φ is very large, this is not a concern for
us, as our initial conditions are such that the only part
of the potential that is accessed is the region bounded-
from-below. For the realistic supersymmetric flat direc-
tion potential, there is usually an extra term φ2n with n
being some positive integer, which stabilizes the poten-
tial against quantum tunneling. We have compared our
simulation results both with and without the φ2n term
included, and, as expected, find little difference.

Another interesting feature of this potential, is that it
is a separable potential that admits a Gaussian profile
for a single Q-ball, which has led to its appearance in
many previous studies [18–23]. For our parameters, the
single Q-ball solution is given by Φ(t,x) = AT (t)X(x),

where T (t) = eiωt, X(x) = e−r
2/2σ2

, σ = 1/
√
−Km2

and A = Me(ω
2−m2+2m2K)/2m2K . Although very useful,

we should emphasize that the existence of CSQs does not
rely on this separable property associated to this poten-
tial.

To prepare CSQs, we simply superimpose single Q-
balls and anti-Q-balls sufficiently close to each other as
the initial configuration, i.e. for n Q-balls located at dn
with angular velocity ωn and phase αn we have,

Φinitial =
∑
n

Ane
(x−dn)2

2σ2 eiωnt+αn , (3)

where An = Me(ω
2
n−m

2)/2m2K+1 = 10me−5ω
2
n+6 and

σ = 1/
√
−Km2 ' 3.16/m for our fiducial model. The

initial configuration relaxes to the CSQ solution very
quickly. Here we restrict ourselves to the simpler case
of vanishing initial relative velocities. There are physical
reasons to do this as it mimics a number of realistic sce-
narios such as when Q-balls are formed during a phase
transition. It is of course also possible to choose the pa-
rameters An and σ to be different from the above values,
which would correspond to choosing excited Q-balls in
the initial state.

We first consider the simplest case of a Q-ball and
an anti-Q-ball with equal and opposite charges: ω1 =
−1.1m, ω2 = 1.1m, α1 = α2 = 0, |d1 − d2| = 1.6/m. In
this case, we have a composite Q-ball where the positive
and negative charges swap with a frequency lower than
the natural angular frequency (the latter being roughly
m). Meanwhile the energy density remains like that of
a single Q-ball. See Fig. 1 for a full period of charge
swapping in 2+1 dimensions. The CSQ lives for at least
O(104) natural oscillation periods, as long as our simula-
tions reliably run. Note that Coleman’s Q-ball stability
theorem [4], which states that the single Q-ball solution
minimizes the energy functional, is applicable to a sys-
tem with a sufficiently large total charge. Physically, this
is because when a large number of the charged particles
group together as a Q-ball, the system’s total energy is

lowered. For our case, the total charge is zero, so Cole-
man’s stability theorem does not apply. We can, however,
say that these CSQs cannot be absolutely stable, as we
can smoothly deform the CSQ configuration to an out-
ward propagating wave with arbitrarily small amplitudes
while keeping the total energy fixed and the total charge
zero. Nevertheless, they may be stable to small pertur-
bations, which would be consistent with our simulations.

(a) t = 0/m (b) t = 12/m (c) t = 17/m (d) t = 29/m

(e) t = 40/m (f) t = 45/m (g) t = 56/m (h)energy dens.

FIG. 1: Evolution of the charge density ((a)–(g)) and energy
density ((h)) for a charge-swapping Q-ball prepared from a
Q-ball and an anti-Q-ball with equal and opposite charges.
The energy density profile is almost unchanged throughout
the evolution. For (a)–(g), the color scheme of blue to red
ranges from −20m3 to 20m3, while for (h) it is from 0 to
100m4.

The existence of CSQs depends on the separation of
the two constituent Q-balls |d1−d2|. Empirically, CSQs
can form when the constituent Q-balls are sufficiently
close to each other:

|d1 − d2| . 2σ . (4)

The physical meaning of this empirical condition is very
clear: One may regard the inner σ region of the single
Q-ball as the core, and CSQs exist when there is overlap
between the cores of the two Q-balls, i.e., when nonlin-
earity becomes important. On the other hand, as we
explain shortly, we find that the existence of CSQs does
not depend on the initial relative phase, i.e. α1 −α2 can
be arbitrary.

To qualitatively understand the charge swapping phe-
nomenon in terms of particle interactions, we first note
that the energy per particle in a Q-ball is less than the
perturbative mass [4], so a Q-ball is a very dense con-
centration of coupled particles. Also, while the channel
of positive and negative charges annihilating into gauge
bosons is absent for an ungauged field theory, there are
processes, such as the 2Φ + 2Φ̄→ Φ + Φ̄ process (Φ indi-
cating a particle and Φ̄ an anti-particle), that can reduce
the positive and negative charges separately. When the
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cores of a Q-ball and an anti-Q-ball meet, due to high
density, the dominating processes are those charge reduc-
ing interactions such as 2Φ+2Φ̄→ Φ+Φ̄. As the charges
reduce, the Q-ball and anti-Q-ball appear to disappear.
But, when the particle density is sufficiently lowered and
the remaining particles become sufficiently relativistic,
the charge increasing processes such as Φ+Φ̄→ 2Φ+2Φ̄
begin to become dominant and the Q-ball and anti-Q-
ball appear to re-emerge. This constitutes half of the
charge swapping period of Fig. 1. Fig. 2 backs up the
above argument as it describes the evolution of the sum
of all the positive charges for the same period as that of
Fig. 1. Also, the current conservation equation is given
by ρ̇Q = ∂i(φ1∂iφ2 − ∂iφ1φ2), where ρQ = φ1φ̇2 − φ̇1φ2.
From this, we can see that any change in the charge den-
sity is balanced by the spatial flux of the charge “mo-
menta”, which explains the spatial movement of charges.
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FIG. 2: The evolution of the sum of positive charges over the
same period as Fig. 1.

Quantitatively, we may understand both why the
charges swap and why the swapping frequency is lower
than the natural oscillation frequency as follows. Given
the form of the charge density and the oscillating na-
ture of φ1 and φ2, the sign of the charge density is de-
termined by the relative phase between φ1 and φ2. In
Fig. 3, we plot the evolution of φ1 and φ2 for a point
close to the border between the positive and negative
charges for the same period as Fig. 1. We can see φ2 oscil-
lates at a frequency slightly higher than that of φ1, which
slowly changes the phase difference with time, resulting
in a lower charge swapping frequency. For example, the
charge density ρQ at the chosen point is positive initially,
but when t ' 13/m and t ' 44/m, both φ1 and φ2 reach
their extreme amplitudes corresponding to φ̇1 = φ̇2 ' 0
hence to ρQ almost vanishing, which matches with the
positive charge evolution in Fig. 2. The reason why φ2’s
frequency is higher than that of φ1 is linked to the fact
that the equations of motion for both φ1 and φ2 are non-
linear and that they have different amplitudes. For our
fiducial model, the logarithmic interaction in Eq (2) does
not make the φ1 and φ2’s oscillations deviate significantly
away from the corresponding harmonic cases. Instead,
it effectively shifts the oscillating frequency by a small

amount. As K is negative, a small field amplitude (i.e.
φ2 here) gives rise to a higher effective frequency.
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FIG. 3: The evolution of φ1 and φ2 for a point close to the
border between the positive and negative charges over the
same period as Fig. 1.

A useful way of understanding why a Q-ball and an
anti-Q-ball can attract to form a composite Q-ball is by
considering a Q-ball as two interacting oscillons, which
are composed of different fields, φ1 and φ2. An oscillon
[19, 24, 25] is also a localized, oscillating configuration
of a nonlinear field, and the existence of oscillon solu-
tions requires the potential has an “open-up” feature,
analogous to a Q-ball. But unlike a Q-ball, there is no
stabilizing Noether charge associated with an oscillon.
So an oscillon by itself is long-lived, simply due to the
non-linear nature of the field theory, but will ultimately
decay. In the Q-ball context, the φ1 oscillon and the
φ2 oscillon are linked via appropriate interactions such
that both of them are stabilized. As the field space of
an oscillon is one dimensional, there is a clear picture of
whether two oscillons of the same field attract or repel
each other when their initial separation is small (. 2σ for
a Gaussian profile oscillon). Indeed, we find that there
exists a surprisingly simple relation: For two oscillons
with approximately equal amplitudes, they attract each
other when they are close to being in phase (their phase
difference . π/2) and they repel each other when roughly
in anti-phase (their phase difference & π/2).

Now, if we view a Q-ball roughly as a φ1 oscillon plus a
φ2 oscillon, there are four cases of extreme initial phase
alignments, depending on whether the φ1 oscillon and
the φ2 oscillon are in phase or in anti-phase. Fig. 4
presents the four initial (t = 0) phase alignments in the
internal field space of Φ (the vertical axis corresponding
to φ2 and the horizontal one to φ1) and whether these
alignments correspond to attractive or repulsive configu-
rations. While case (b) of Fig. 4 is a single charge bound
state, cases (a) and (d) correspond to CSQs. We can
see that as long as there is one kind of oscillon-pair that
is in phase, either the φ1 or φ2 kind, the two Q-balls at-
tract, despite the fact that the other kind of oscillons may
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be in anti-phase. This suggests that in this two Q-ball
setup the attracting force from two in-phase oscillons is
generically greater than the repelling force from two in-
anti-phase oscillons. The reason for this is simple: the
φ1 and φ2 oscillons have equal amplitudes when the Q-
balls are well separated, but when they are placed close
together, on average the amplitudes for the in-phase os-
cillons are enhanced while the amplitudes for the in-anti-
phase oscillons are reduced (See Fig. 3), leading to a net
attraction.

(a) (b)

(c) (d)

FIG. 4: Initial (t = 0) phase alignments of two closely placed
Q-balls and whether they attract or repel. The vertical (hor-
izontal) axis corresponds to φ2 (φ1). A red solid circle rep-
resents a Q-ball’s position in the internal field space of Φ,
and a blue solid circle presents that of an anti-Q-ball. The
arrows represent the velocity directions (sign of ω) of the cor-
responding Q-balls in field space. (a) attract: the φ1 fields
of a Q-ball and anti-Q-ball are in phase (i.e. they track each
other in the φ1 direction) and the φ2 fields are in anti-phase
(i.e. they head off in opposite directions in the φ2 direction).
(b) attract: φ1, φ2 both in phase. (c) repel: φ1, φ2 both in
anti-phase. (d) attract: φ1 in anti-phase and φ2 in phase.

With the phase alignment argument, it is also easy
to see that the conditions for the existence of CSQs is
insensitive to the initial phase difference of the two con-
stituent Q-balls. For case (b) and (c) of Fig. 4, the phase
alignment will be roughly maintained during the early
evolution, since the two Q-balls have the same kind of
charge so that they rotate in the same direction in field
space. For case (a) and (d) of Fig. 4, however, the Q-ball
and the anti-Q-ball are rotating in the opposite direction,
so case (d) becomes case (a) following roughly a quarter
of a period of evolution - up to a rotation in field space.
In fact, for a Q-ball and an anti-Q-ball with a generic
initial phase difference, its phase alignment will always

become case (a) after some fraction of a period of evolu-
tion - up to a rotation in field space. Therefore the initial
phase difference plays little role in forming CSQs.

Finally, we have been mainly focusing on CSQs con-
structed from a Q-ball and an anti-Q-ball with equal and
opposite charges. But, as we have mentioned, we can
also construct CSQ configurations with more Q-balls and
anti-Q-balls and moreover with unequal charges. Apart
from the CSQ of Fig. 1, the simplest members in this new
class of nonlinear objects are shown in Fig. 5, where each
of the configurations leads to long-lived charge-swapping
solitons. Hints of more complicated, chaotic CSQs for
the running mass potential have appeared in simulations
with random initial conditions [26, 27], but it was not
known whether they have CSQs’ intrinsic properties such
as the charge swapping and the energy density resembling
that of the single Q-ball. We have reproduced these re-
sults and found they indeed possess the CSQ properties.

(a) (b) (c)

(d) (e) (f)

FIG. 5: A few examples of initial CSQ configurations with
more Q-balls and anti-Q-balls and/or with unequal charges.
They evolve in a manner similar to the Q-ball anti-Q-ball
case, with the positive and negative charges swapping place
as the system evolves.

In conclusion, we have described a new composite state
of non-topological solitons, the charge-swapping Q-ball
(CSQ). The positive and negative charges within one
CSQ swap with a frequency lower than the natural oscil-
lating frequency of the constituent Q-balls, whilst the
energy density of the CSQ resembles that of a single
Q-ball. Their existence can be understood in terms of
forces between multiple oscillons with different phases.
Although we have not presented details here, we have
obtained CSQs in various dimensions and models. We
have shown that the CSQs can be obtained through a
relaxation of appropriately superimposed single Q-ball
and anti-Q-ball solutions, thus suggesting a practical way
to construct a new series of highly non-trivial, localized
nonlinear solutions for field theories that possess single
Q-ball solutions. As single Q-balls have been constructed
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in laboratories, we speculate that the novel properties of
CSQs may also find their applications in condensed mat-
ter systems.
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