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The possibility of a strong a-theorem in six dimensions is examined in multi-flavor φ3 theory.
Contrary to the case in two and four dimensions, we find that in perturbation theory the relevant
quantity ã increases monotonically along flows away from the trivial fixed point. ã is a natural
extension of the coefficient a of the Euler term in the trace anomaly, and it arises in any even
spacetime dimension from an analysis based on Weyl consistency conditions. We also obtain the
anomalous dimensions and beta functions of multi-flavor φ3 theory to two loops. Our results suggest
that some new intuition about the a-theorem is in order.

INTRODUCTION

The counting of degrees of freedom in quantum field
theories (QFTs) is of paramount importance in under-
standing their structure and phases. In particular, it
is often of interest to understand how low-energy, long-
range “IR” degrees of freedom might be related to the
underlying microscopic “UV” degrees of freedom. For ex-
ample, in quantum chromodynamics we observe mesons,
hadrons, etc. at low energies, but believe them to consist
of the quarks and gluons of the microscopic theory.
A rather good understanding of QFT degrees of free-

dom exists in two dimensions. There, a quantity can be
defined that undergoes a monotonically decreasing renor-
malization group (RG) flow from a critical point in the
UV to a critical point in the IR. At the critical points the
quantity is stationary with respect to variations in scale,
and becomes the central charge c of the Virasoro alge-
bra of the corresponding conformal field theory (CFT),
which is also the coefficient of the topological term (the
Ricci scalar) in the two-dimensional trace anomaly. This
is the result of Zamolodchikov [1].
In the four-dimensional case, which is of great inter-

est to particle physicists, results are not so definitive.
Cardy suggested [2] that the four-dimensional analog
of c is the coefficient of the (topological) Euler term
in the four-dimensional trace anomaly, a. In fact, it
was shown, using heat kernel methods for field theories
on curved backgrounds [3] and Weyl consistency condi-
tions [4], that a perturbative version of Zamolodchikov’s
result holds [4, 5]. More recently, non-perturbative meth-
ods have made headway into a weaker version of the a-
theorem, where, instead of establishing a monotonic flow,
a relation between the value of a at the critical points is
argued for [6], namely that aUV > aIR.
In this paper we investigate the possibility of an a-

theorem in six dimensions. The weak version of the a-

theorem in d = 6 was studied in [7] using the methods
of [6], but no definitive conclusion could be reached. The
six-dimensional case is of interest in clarifying the basic
structure of QFT in general. Interesting CFTs arise in
d = 6 by string-theoretic constructions and the low en-
ergy dynamics of M5 branes. The spectrum of operators
in these theories can be studied without any knowledge
of what Lagrangian “describes” them, but not much is
known about RG flows to and from these theories. As
far as Lagrangian theories are concerned, the φ3 theory
is of interest as the unique classically scale-invariant the-
ory in d = 6. Its RG running can be easily studied with
well-known methods, and expectations stemming from
the intuition behind the a-theorem can be put to the
test.

In this work we examine the possibility of an a-theorem
in six-dimensional multi-flavor φ3 theory. We find that
the opposite conclusion of two- and four-dimensional a-
theorems may be drawn in six dimensions, at least in per-
turbation theory. More specifically, we find that the can-
didate for an a-theorem singled out by the Weyl consis-
tency conditions increases monotonically along the renor-
malization group flow out of the trivial fixed point. To
come to our conclusion, we use the methods developed
in [4] (see also [8, 9]). This involves constraining the
form of the Weyl anomaly utilizing the Abelian nature
of the Weyl group; because the Weyl group is related
to a change of scale, this imposes constraints on the RG
properties of quantities in the anomaly and, in particular,
produces a candidate for an a-theorem. In section we ex-
plain this method and in section we show that a quantity
that becomes a at critical points increases monotonically
along the renormalization group flow, at least in pertur-
bation theory. We discuss the implications of this result
in section .
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WEYL CONSISTENCY CONDITIONS

In general, the classical symmetries of a theory may be
broken for its renormalized Green functions. The form of
this “anomaly” is constrained by the algebra of the sym-
metry group: for an infinitesimal transformation gener-
ated by ∆a acting on the generating functional of renor-
malized Green functions Γ, we have

[

∆a,∆b
]

Γ = ifabc∆cΓ, (1)

where fabc are the structure constants of the symmetry
group. These are the so-called Wess–Zumino consistency
conditions [10].
It is useful to study a QFT on a curved background

with spacetime-dependent couplings so that the metric
γµν(x) and couplings gI(x) act as sources for the stress-
energy tensor and the operators (labelled by I) in the
Lagrangian, respectively. We only consider the case of
dimensionless couplings, so that in perturbation theory
all the interaction terms in the Lagrangian are nearly
marginal. We introduce their infinitesimal local Weyl
transformations as

∆σγ
µν(x) = 2σ(x)γµν(x) ,

∆σg
I(x) = σ(x)βI (x) ,

(2)

where βI(x) is the beta function of the associated cou-
pling and depends on x only through gI(x). The group
of Weyl transformations is Abelian and has only a single
generator. Thus, Eq. (1) becomes

[∆σ,∆σ′ ] Γ = 0, (3)

where it is understood that Γ = Γ[γµν , gI ], indicating the
dependence on the metric and couplings as background
fields. If the flat-background theory is a CFT, (3) has
been solved in [11–13].
The response of Γ to Weyl rescaling produces the Weyl

anomaly

∆σΓ[γ
µν , gI ] =

∫

ddx
√
γ σ
∑

i

(aiAi[γ
µν ]

+ biBi[γ
µν , gI ] + ciCi[g

I ]
)

,

(4)

where d is the dimension of spacetime (presumed even
here), and i is a counting index. The form of Eq. (4)
is fixed by general diffeomorphism invariance and power
counting. Ai, Bi and Ci are functions of the metric and
couplings, and by dimensional analysis must include d
spacetime derivatives. The Ai do not contain any deriva-
tives on couplings and are therefore of d/2-th order in
curvature, the Ci are functions of d derivatives on the
couplings, and, finally, the Bi are functions of both cur-
vature and derivatives of the couplings. The coefficients
ai, bi and ci are all functions of the couplings only. In

particular, the Ai contain the Euler term in d dimensions
with coefficient (−1)d/2a, so that at fixed points a > 0.

Now, the consistency conditions from Eq. (3) impose
integrability relations on the terms in Eq. (4). The rela-
tion of interest involves the coefficient of the Euler term
in Eq. (4) and coefficients of terms in the Bi involving
Hµν , a generalization of the Einstein tensor to d dimen-
sions found by Lovelock [14]. In even dimensions, it was
shown that an integrability relation exists [15] involving
a such that [16]

∂I ã =
1

d
(χIJ + ∂IwJ − ∂JwI)β

J , (5)

which can be brought to the form

dã

d logµ
=

1

d
χIJβ

IβJ , (6)

where µ is the renormalization scale. Here χIJ and wI

are tensors in the space of couplings and they appear
in the coefficients of the Bi terms ∂µg

I∂νg
JHµν and

∇µ∂νg
IHµν in Eq. (4), where ã is a scalar in the space of

couplings [17]. Both quantities may be related to correla-
tion functions of the stress-energy tensor, its trace, and
the operators in the QFT. Since βI = 0 at the critical
points, ã is stationary with respect to variations of scale
there. In fact

ã = a+ wIβ
I +

∑

p

ap, (7)

where ap are some of the ai’s in (4) that vanish at criti-
cality. Hence, at critical points, ã = a. Moreover, Eq. (6)
that ã satisfies is very similar to that found for the analo-
gous quantity in two dimensions in [1]. This suggests ã as
the analog of Zamolodchikov’s monotonically-decreasing
function in two dimensions.

While the consistency conditions impose this integra-
bility relation, a strong version of the a-theorem must es-
tablish that the “metric” χIJ is positive-definite, which
then proves that dã/d logµ > 0. To compute χIJ , other
methods must be used.

RESULTS FROM THE EFFECTIVE POTENTIAL

To compute χIJ in six dimensions, we work with the
conformally-coupled scalar field theory [18] on a curved
background with Lagrangian

L = 1
2 (∂µφi∂νφ

iγµν + 1
5Rφiφ

i) + 1
3!gijkφ

iφjφk, (8)

with the fields, spacetime metric, and couplings all im-
plicitly functions of spacetime. The generic coupling con-
stants gI are here specifically gijk with the label I = (ijk).
At the classical level the term ∂µg

I∂νg
JHµν , where the



3

Lovelock tensor in d = 6 is

Hµν = (R2 − 4RκλR
κλ +RκλρσR

κλρσ)γµν

− 4RRµν + 8RµκR
κ
ν + 8RκλRκµλν

− 4RκλρµR
κλρ

ν ,

clearly does not show up, so χIJ = 0 at the classical level.
To find the first (quantum) contributions to χIJ , we can
compute the effective potential in a curved background
with the loop expansion to two loop order or, equivalently,
second order in ~ [19].

The six-dimensional two-loop effective potential can be
computed using heat kernel methods in dimensional regu-
larization [3, 20, 21]. This is done in position space, and
it involves the computation of the two-loop graph and
the associated graph with the counterterm insertion in
Fig. 1. These two graphs generate the full two-loop effec-
tive potential. Such computations have been explained

x y x

FIG. 1. The diagrams that need to be considered at the two-
loop level.

in great detail in [3]. The case of d = 6 single-flavor φ3

theory with x-independent coupling has been worked out
in [20, 21], and we find agreement with these papers in
cases checked.

From our computation we determine the one- and two-
loop anomalous dimensions of the elementary fields φi

and the beta functions for the couplings gijk:

γ(1) =
1

64π3

1

12
, (9)

γ(2) =
1

(64π3)2
1

18

(

− 11

24

)

, (10)

β(1) = − 1

64π3

(

− 1

12

)

, (11)

β(2) = − 1

(64π3)2
1

2

(

− 7

36

+
1

2
− 1

9
(12)

+
11

216

)

.

To our knowledge the multi-component two-loop results
(10) and (12) have not appeared for general coupling gijk
before in the literature, although they may be extracted
from Ref. [22]. Here we have used diagrammatic nota-

tion to indicate the corresponding contraction of the cou-
plings, e.g.,

= giklgjkl, (13)

and permutations of the free indices in the wavefunction-
renormalization corrections to the beta function are un-
derstood. For example,

= gijlglmngkmn + permutations. (14)

Eq. (11) generalizes the single field result of [23] (see
also [20, 21, 24, 25]) to the multi-field case, and agrees
with the results of [22, 26, 27] [28]. The first contribu-
tion to (12) is non-planar. For the seemingly asymmetric
vertex corrections in (12) (the second and third terms) a
symmetrization is understood; for example,

∼ + +

where “∼” means “the left-hand side stands for the right-
hand side.”
Our main result is the two-loop expression for the “met-

ric” in theory space:

χ
(2)
IJ = − 1

(64π3)2
1

3240
δIJ . (15)

With this result and the one-loop beta function (11) we
can use the consistency condition (5) to compute ã at

three loops. For this we also need w
(2)
I , which we can

obtain from the same heat-kernel computation [29]:

w
(2)
I = − 1

(64π3)2
1

6480
gI . (16)

We find [30]

ã(3) =
1

(64π3)3
1

77760

(

− 1

4

)

. (17)

The three-loop contribution to the coefficient of the Euler
term a can also be computed using the relation between
ã and a of the form (7) found in [15]. We find

a(3) =
1

(64π3)3
7

388800

(

− 1

4

)

. (18)

Clearly, both ã and a increase in the flow out of the trivial
fixed point.
One may wonder if the results in (15) and (17) de-

pend on the renormalization scheme we used to compute
the two-loop effective potential. Actually, Eq. (5) (and
thus Eq. (6)) is invariant under the choice of renormaliza-
tion scheme. The individual terms are, however, scheme-
dependent. The corresponding arbitrariness is of the
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form δã = zIJβ
IβJ and δχIJ = βK∂KzIJ + zKJ∂Iβ

K +
zIK∂Jβ

K , where zIJ is an arbitrary regular symmetric
function of the couplings. Since the arbitrariness in ã van-
ishes (quadratically) when fixed points are approached,
it cannot change the nature of the flow in the vicinity of
fixed points.

DISCUSSION

Using the result of our computation, Eq. (15), in the
evolution equation (6), or equivalently, the explicit form
of ã in (17), it is apparent that in perturbation theory the
quantity ã in Eq. (6) actually increases as one decreases
the renormalization scale. This is contrary to intuition
developed in d = 2, 4, where ã seems to count the degrees
of freedom in a QFT.
This result should be taken with two comments in

mind. Firstly, that the result is a perturbative one, and
we cannot say anything about non-perturbative regimes
of six-dimensional QFTs. And secondly, that there are no
known perturbative critical points other than the single,
trivial one at gijk = 0, so in this context renormalization
group flows do not connect pairs of critical points [31].
However, it is still true that, with Eq. (6) identical in
d = 2, 4, and 6 dimensions, the strong version of the a-
theorem holds perturbatively in d = 2, 4 but not in d = 6
[32].
We do not know the reason for this difference. One

possibility may be the unstable nature of the theory we
are considering. After all, a cubic potential is unbounded
from below. However, the state with 〈φi(x)〉 = 0 is per-
turbatively stable and our computations are valid only in
the perturbative regime. Moreover, the analogous case in
four dimensions, the inverted quartic potential, is also un-
stable, but does satisfy a perturbative a-theorem (since
the metric in theory space, χIJ , is perturbatively posi-
tive in four dimensions, independently of the sign of the
quartic couplings). Another possibility is that a flow be-
tween critical points is required for an a-theorem to hold,
but the only perturbatively-accessible critical point in the
class of theories in Eq. (8) is the Gaussian fixed point at
gijk = 0. But, again comparing to known cases, a pertur-
bative strong a-theorem holds for scalar theories in four
dimensions, in spite of only having a Gaussian fixed point
at the origin of coupling-constant space.
a-theorems can be used to restrict proposed dynam-

ics of strongly interacting models [2]. If our result that
ã increases in flows towards the IR holds even non-
perturbatively, one could envision using it to restrict pu-
tative dynamics of strongly interacting QFTs in d = 6.
In this sense, the existence of an “anti-a-theorem” may
be just as useful as a normal one. It is therefore of in-
terest to investigate renormalization group flows in the
vicinity of non-Lagrangian critical QFTs that have been
formulated through studies of low energy dynamics of

M5 branes. Of course, another avenue of research is the
establishment of the theorem non-perturbatively in the
presence of a flow between fixed points.

Finally, let us note that there may be quantities that
reduce to a at fixed points that are not of the form of
ã (up to the ambiguity zIJβ

IβJ ), but that do undergo
monotonically-decreasing RG flow towards the IR. This
possibility was explored in [33].
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