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We study proximity induced triplet superconductivity in a spin-orbit-coupled system, and show
that the d-vector of the induced triplet superconductivity undergoes precession that can be con-
trolled by varying the relative strengths of Rashba and Dresselhaus spin-orbit couplings. In par-
ticular, a long-range spin-triplet helix is predicted when these two spin-orbit couplings have equal
strengths. We also study the Josephson junction geometry and show that a transition between
0 and π junctions can be induced by controlling the spin-orbit coupling with a gate voltage. An
experimental setup is proposed to verify these effects. Conversely, the observation of these effects
can serve as a direct confirmation of triplet superconductivity.
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Introduction - Crucial to the success of spintronics [1]
are injection of spin, its long decay length and its manip-
ulation. The study of spin transport in a superconductor
has given rise to the subfield known as superconducting
spintronics [2–4]. One may wonder if the spin-1 of Cooper
pairs in a triplet superconductor can play a similar role
as the electron spin in spintronics. The observation of
surprisingly long-range proximity effect in a supercon-
ductor (SC)/ferromagnet (FM) junction [5–11] has been
interpreted in terms of an injection into the FM of triplet
Cooper pairs with a long decay length [12–17]. However,
it is unclear how to manipulate the long-range part of
the induced triplet pair.

We propose here a geometry in which the triplet pairs
are injected into a material with spin-orbit coupling
(SOC) and show, theoretically, that they can be manip-
ulated by varying the relative strengths of the Rashba
and Dresselhaus SOCs. In particular, we predict a long-
range spin-triplet helix, which can be verified by observ-
ing a 0−π transition in Josephson junctions as a function
of the SOC strengths. We show that the effect is robust
against any spin independent scattering. Proximity effect
in SOC materials has been considered previously,[18, 19]
but with only Rashba SOC, which does not produce long-
range effects discussed below.

Before presenting the detailed microscopic theory, we
first illustrate the underlying physics, shown in Fig 1.
In the absence of magnetization and SOC, four kinds
of Cooper pairs (singlet | ↑↓〉 − | ↓↑〉 and triplet pairs
| ↑↓〉+ | ↓↑〉, | ↑↑〉± | ↓↓〉) are allowed with a zero center-
of-mass momentum. The magnetization breaks the de-
generacy between |k, ↑〉 and |−k, ↓〉. It will lead to a spa-
tially modulated oscillation e−iqx| ↑↓〉± eiqx| ↓↑〉 [20, 21]
for the Cooper pairs with opposite spins but leave the
pairs | ↑↑〉±| ↓↓〉 unchanged, as shown in Fig 1(b). (Here
we assume that the system is uniform along y and z direc-
tions so that the center-of-mass momentum of pairs is al-
ways zero along these directions.) On the contrary, SOC
breaks the degeneracy between |k, ↑ (↓)〉 and |−k, ↑ (↓)〉,

as shown in Fig. 1(c,d). Thus, the Cooper pairs with par-
allel spins will oscillate spatially as e−iqx| ↑↑〉+ eiqx| ↓↓〉,
while the pairs | ↑↓〉 ± | ↑↓〉 remain unchanged. Here we
emphasize that the spin quantization axis aligns along
different directions for different momenta, determined by
the form of SOC in Fig. 1(c). The spatially oscillatory
pairs will decay after taking into account all possible
wave vectors of q [15] in the case of Fig. 1(b). Simi-
larly, the triplet pairs | ↑↑〉 and | ↓↓〉 in Fig. 1(c) will also
generally decay rapidly in the SOC region. Therefore,
in the presence of magnetization and generic SOC, only
the pairs with zero center-of-mass momenta exhibit long-
range proximity effect. However, there is an exception for
a system with equal strengths of Rashba and Dresselhaus
SOCs. In this case, the Fermi surfaces for two spin bands
shifted in opposite directions by Q = 4mα, shown in Fig.
1(d). Here m being the electron effective mass and α
being the Rashba SOC strength. Thus, all of spatially
oscillatory pairs have the same wave vector Q and will
not decay even in the presence of spin independent scat-
tering. We show below that these oscillatory triplet pairs
result in a long-range helical mode, dubbed ”long-range
spin-triplet helix”, in analogy to the persistent spin helix
observed in two dimensional electron gases (2DEGs)[22–
26].
Hamiltonian and pairing functions - We study

the SC/normal-conductor structure whose Hamiltonian
takes the form

Ĥ =

(
H0 ∆̂

∆̂† −H∗0

)
, ∆̂ = ∆(x)iσy,

H0 =

(
p2

2m
− µ

)
σ0 + (M(x) + h(x,k)) · σ,

in the basis [c↑, c↓, c
†
↑, c
†
↓]

T, where c↑,↓ and c†↑,↓ are elec-
tron annihilation and creation operators for different
spins, m is the electron mass, µ is the chemical poten-
tial, ∆̂ is the spin-singlet s-wave superconducting gap,M
is the magnetization, h is the effective magnetic field of
SOC and σ denotes the spin operators. The gap strength
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FIG. 1. Energy dispersion and Fermi surfaces are shown
for (a) normal metals, (b) ferromagnets, (c) a 2DEG with
Rashba SOC and (d) a 2DEG with equal strengths of Rashba
and Dresselhaus SOCs. The possible forms of spin states of
Cooper pairs, including singlet and triplet pairs, are also il-
lustrated in the figures. For ky 6= 0, kx = 0, the gap between
two spin bands in (c) is |2αky|.

∆(x) is zero in the proximity region and has a constant
value ∆ in the superconducting region. The magnetiza-
tion M(x) and effective magnetic field of SOC h(x, k)
are only present in the normal-conductor and depend on
the spatial coordinate x shown in Fig. 2 and Fig. 3(a,b).

Cooper pairs in spin space can be described microscop-
ically by a pairing function fR(E, r) = (d0σ0 + d ·σ)iσy
[12, 27], which is the off diagonal block of the retarded
Green’s function

GR(E, r, r′)
∣∣
r=r′ =

(
gR(E, r) fR(E, r)

f
R

(E, r) gR(E, r)

)
. (1)

Here d0 and d are the expectation value of singlet and
triplet pairs respectively, E is the energy, r and r′ are the

spatial coordinates; we have fR
ij (E, r) = −(f

R

ij(−E, r))†;

and gR(gR) is the electron (hole) Green’s function. Both
fR and gR are 2 × 2 matrices in spin space. The su-
perconducting gap is related to the pairing function by
the equality ∆̂ = (1/2π)

∫
dEλfEImfR where λ is the

attractive interaction strength and fE is the Fermi dis-
tribution. In the proximity region, the superconducting
gap is zero because of λ = 0, but the pairing function fR

can be nonzero. Below, we will calculate, in the presence
of either magnetization or SOC, the spatial evolution of

FIG. 2. A schematic plot of a SC/FM/SOC junction. Energy
dispersions for different regions are shown above the junc-
tion structure. The colors in the dispersion relation represent
different spin indices and the solid lines (dashed lines) de-
note electron (hole) bands. k1(2),f and k3(4),f are the Fermi
momenta of different spin bands for SOC and FM regions,
respectively. Different propagation or reflection processes are

denoted by T
in(out)

fm(soc) or Rad.

the pairing function fR(E, r) in the proximity region and
show its consistence to the physical picture in Fig. 1.
d-vector in a 1D SC/FM/SOC junction - In the ferro-

magnetic region (x ∈ (−a, 0)) the SOC is zero, while in
the SOC region (x > 0) the magnetization is zero shown
in Fig. 2. In the SOC (FM) region, the Fermi wave vec-
tors of the spin split bands, k1f , k2f (k3f , k4f) in Fig 2,
satisfy

k2f − k1f =
2|h(kf)|
~vf

, k4f − k3f =
2M

~vf
, (2)

with ~vf = ~kf/m =
√

2µ/m, assuming h,M � µ.
The Green’s functions GR can be related to the re-
flection matrix R by the Fisher-Lee relation[28] which
has been applied to the superconducting proximity effect
[29, 30]. For 1D case, Fisher-Lee relation in the basis

[c↑, c↓, c
†
↑, c
†
↓]

T takes the form [29–31]

Rij(E, r) = −δij + i~√vivjGRij(E, r), (3)

where i, j = 1, . . . , 4 and vi(j) is the velocity of the par-
ticle at energy E in i(j) channels. Therefore, we will
calculate the reflection matrix to extract pairing func-
tions in 1D case. For simplicity, we consider the clean
limit with perfect transmission at FM/SOC boundary
and ideal Andreev reflection at the FM/SC boundary.
The reflection matrix R(x) in the SOC region can be de-
composed into five matrices representing five steps shown
in Fig. 2: an electron first propagates from x = r to the
interface at x = 0 (T in

soc); it then propagates to the inter-
face at x = −a (T in

fm); ideal Andreev reflection occurs at
the SC/FM interface of x = −a (Rad), where the elec-
tron is completely reflected as a hole; the reflected hole
transmits back to x = 0 (T rf

fm), and finally to the SOC
region at x = r (T rf

soc) [32]. Consequently, the scattering
matrix R(r) takes the form

R(r) = T rf
socT

rf
fmRadT

in
fmT

in
soc. (4)
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When there is no SOC (i.e., r = 0), the reflection ma-
trix at FM/SOC boundary takes the form [32]

R(r = 0) = T rf
fmRadT

in
fm = −~vf(d0σ0+d·σ)iσy⊗τy, (5)

where

(d0,d) = −ie
−iα

~vf

(
cos

(
2Ma

~vf

)
, i sin

(
2Ma

~vf

)
m

)
,

(6)
m = M/M , α = arccos(E/∆) and τz = +1(−1) for the
electron (hole) in the Nambu space. In the limit M � µ,
we take

√
vivj ≈ vf . Eqs. (5) and (6) show oscillation

between singlet and triplet pairs as a function of a, the
distance from the SC/FM interface. Thus, by choosing
an appropriate length a of the FM region, one can use
the SC/FM junction to inject singlet or triplet pairs into
the SOC region.

When there is no FM (a = 0), the reflection matrix
reduces to R(r) = T rf

socRadT
in
soc = Rad [32] in the SOC

region. This is because SOC does not lift the degeneracy
of time reversed pairs, as shown in Fig 1 (c) and (d). For
an FM of length a satisfying 2Ma/~vf = π/2, only triplet
pairs with d-vector along M are injected into the SOC
region. When the effective magnetic field of SOC is par-
allel to the magnetization, say h(k) ‖M , the reflection
matrix in the SOC region can be written as

R(r) = −e−iαm · σiσy ⊗ τy. (7)

When h(k) ⊥ M , the reflection matrix in the SOC
regime has the form

R(r) = −~vf(d1m · σ + d2m× n · σ)iσy ⊗ τy, (8)

where

(d1, d2) =
e−iα

~vf
(cos(k2f − k1f)r, sin(k2f − k1f)r) , (9)

and n is the unit direction of h(kf). Here d1 and d2 give
the decomposition of the d-vector along the direction m
and m× n, respectively. Eq. (7) implies that d-vector
keeps its original direction in the case of d ‖ h(k). In
contrast, Eq. (8) shows that in the case of d ⊥ h(k), d-
vector precesses in the plane perpendicular to h(k) when
propagating along 1D SOC region. The above conclu-
sions are consistent with our physical picture shown in
Fig 1(c,d). Especially, based on Eq (9), the precession
of d-vector leads to a helical structure, which is dubbed
d-helix or spin-triplet helix and schematically shown by
red arrows in the SOC region of Fig 3 (b).

0 and π Josephson junction transition - To confirm the
predicted d-helix, we propose an experimental setup of
a SC/FM/SOC/FM/SC junction (Fig. 3(a,b)) and show
that the d-helix can lead to a 0−π transition in Josephson
junctions [15]. The magnetizations of two ferromagnetic
layers point along x and −x direction (Fig. 3(a,b)), to
ensure a trivial 0-Josephson junction in the absence of
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FIG. 3. The magnetization direction (the green arrows) and
the effective magnetic field direction of SOC (the purple ar-
row) are shown (a) for a 0-junction and (b) a π-junction. The
red arrows reveals the spatial distribution of d-vector. The
phases of SCs at two sides are taken to be φ/2 and −φ/2.
The color in (c) and (d) shows the spectral function of the
SC/FM/SOC/FM/SC junction (logarithmic plot) as a junc-
tion of the relative phase φ for a 0-junction and π-junction,
respectively. The black lines are the Andreev levels from an-
alytical calculations. (f) shows the current-phase relation for
the 0- and π-junction.

the SOC region. The lengths of FMs are chosen to satisfy
2Ma/~vf = π/2, so only triplet pairs with d-vector along
x direction are injected into the SOC region.

We consider two cases with the SOC h(k) = αkxêx ‖
M in Fig. 3(a) and h(k) = αkxêy ⊥M in Fig. 3(b). The
length of the SOC wire satisfy (k2f−k1f)L = π. To study
the current-phase relation in this setup, we first calculate
the Andreev levels numerically by evaluating the spectral
function, Tr[

∑
n g

R(E, xn)]/N , in a tight-binding model.
Here gR is the electron retarded Green’s function defined
in Eq. (1), xn represents the nth site and N is the total
number of sites in the proximity region. The spectral
functions are plot as a function of the relative phase φ
between two SCs in Fig. 3(c,d). The peaks shown by
the red color indicate Andreev levels. We also obtain
Andreev levels analytically using the standard scattering
matrix method [32–34]. The analytical results are shown
by two black lines in Fig 3(c,d), which are consistent with
the numerical results. There is a small difference that the
crossings of the black curves at φ = π, in Fig. 3(c) and at
φ = 0; 2π in Fig. 3(d) turn into anti-crossings in numeri-
cal results. This is because we impose a barrier potential
at the SC/FM interfaces and include the Fermi velocity
mismatch among different regions in numerical calcula-
tions, which remove all degeneracies in analytical results.
The anti-crossing changes the period of the Josephson
current at zero temperature, Is = 2e

~
∑
n ∂En/∂φ with
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the summation of negative Andreev levels, from 4π (black
curves) to 2π [33, 35]. The Josephson current for the
Fig. 3(c) gives the form of Is ∼ sin(φ) (the blue line in
Fig. 3(f)), which corresponds to a 0-junction. In contrast,
for the Fig. 3(d) we have Is ∼ sin(φ + π) (the red line
in Fig. 3(f)), indicating a π-junction. This 0-pi junction
transition is consistent with the physical picture of the
d-vector precession, shown by red arrows in Fig. 3(a,b).
Further calculations show that the π junction is obtained
for L satisfying π/2 < (k1f − k2f )L < 3π/2 [36].
d-helix in a 2D system - Having clarified the physics

in a 1D model, we next ask if d-helix also exists in a 2D
system. For a 2DEG, the SOC has the form (assuming
x-axis along [110] direction)

Hso = (α+ β)kxσy + (β − α)kyσx,

where α and β are the Rashba and Dresselhaus SOC
strengths. When α = β, the Fermi surface with the
spin parallel (anti-parallel) to the y axis is shifted along
-x (x) direction by Q/2, as shown in Fig 1(d). As
a result, the eigenenergies of two spin states satisfy
ε1(k) = ε2(k + Q), where Q = 4mβêx, and 1 (2) de-
notes the spin parallel (anti-parallel) to the y axis. As
shown in Refs. [22–26], one can construct spin helix op-
erators, which commute with the Hamiltonian and lead
to a persistent spin helix mode.

In our model with superconductivity, we can define
triplet pairing operators

d̂x =
1

2

∑
{k,i}

δ(εk,i − µ)c†k,ic
†
−k−(−1)iQ,i + h.c.

 ,(10)

d̂z =
1

2i

∑
{k,i}

δ(εk,i − µ)c†k,ic
†
−k−(−1)iQ,i − h.c.

(11)

where the summation is performed in the interval
{k, i} = {kx < (−1)iQ/2, ky} at the Fermi surface to
avoid double counting. These two operators represent a
d-helix of triplet pairs with center-of-mass Q in x-z plane.
Since the operators d̂x,z commute with the Hamiltonian
H0+Hso [32], a persistent d-helix also exists in the triplet
superconducting proximity region. It is also noted that in
the case of α = β, the Hamiltonian even with a spin inde-
pendent scattering potential, H = H0+Hso+V (r)σ0, can
be transformed to a Hamiltonian without SOC through
the unitary matrix U = exp(−iQx/2)σy. This is be-
cause U is independent on momenta and commutes with
V (r)σ0. At the same time, the triplet pairs with center-
of-mass momentum Q as defined in Eq. (10, 11) is trans-
formed to those with zero center-of-mass momentum as
shown in Fig 1(a). Therefore, we expect that this spin-
triplet helix is immune to any spin-independent scatter-
ing and its decay length should be as long as the Cooper
pairs coherence length [33] in the normal region. This can
be further confirmed by solving Usadel equations [37, 38]
with SOCs [32].

(a) (b)

(c)

FIG. 4. The spatial dependence of d-vector of triplet pairs
(the red arrows) and the corresponding effective magnetic
field (the purple arrows) of the SOC are shown for (a) α = β
(π-junction) and (b) α = −β (0-junction). TSC means triplet
superconductor. (c) The proposed 2D SC/FM/SOC/FM/SC
structure for an electronic-tunable Josephson junction.

In experiments, the Dresselhaus parameter β is fixed
while Rashba parameter α can be tuned by a gate volt-
age. Therefore, the following geometry can be used to
confirm the oscillatory triplet pairs by observing an elec-
trically tunable 0-π transition. The length L of the SOC
region is chosen to satisfy the condition QL = π. From
the above discussion, when α = β, the d-vector of triplet
pairs changes its sign after propagating from x = x2

to x = x3 (Fig. 4(a)), leading to a π-junction. If we
tune the Rashba parameter to α = −β, the effective
magnetic field of SOC h = 2βky êx is along the x di-
rection, parallel to d-vector. Based on our theory, d-
vector keeps its direction in the SOC region (Fig. 4(b))
and we will have a 0-junction. The proximity effect in
the 2D Josephson junction for these two cases should
be long-range according to our arguments. For realis-
tic experiments, InAs quantum wells provide a potential
candidate (Fig 4(c)), because they show strong proxim-
ity effect due to their low Schottky barrier [39]. If the
two FM layer are Ni, 1 nm thickness [9] is enough to
convert singlet pairs in SC to triplet pairs on FM/InAs
interface. For the effective mass meff0.04me and typical
α = 0.2eVÅin InAs quantum wells, we find Q ≈ 40µm−1,
which corresponds to the length of ∼ 80nm of the SOC
region to realize the Josephson 0 − π junction transi-
tion. This length is much smaller than the coherence
length, ξN = ~2

√
2πn/meff2πkBTc ≈ 4µm [33], where

n = 1012cm−2 is the typical electron density in the InAs
quantum well and Tc = 1.2K is the critical temperature
of Al.
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Schmidt, and B. Büchner, Phys. Rev. Lett. 109, 057005
(2012).

[12] F. S. Bergeret, A. F. Volkov, and K. B. Efetov, Phys.
Rev. Lett. 86, 4096 (2001).

[13] M. Eschrig and T. Loefwander, NATURE PHYSICS 4,
138 (2008).

[14] F. S. Bergeret, A. F. Volkov, and K. B. Efetov, Rev.
Mod. Phys. 77, 1321 (2005).

[15] A. I. Buzdin, Rev. Mod. Phys. 77, 935 (2005).
[16] S. Takei and V. Galitski, Phys. Rev. B 86, 054521 (2012).
[17] F. S. Bergeret and I. V. Tokatly, Phys. Rev. Lett. 110,

117003 (2013).
[18] Z. Yang, J. Wang, and K. Chan, Superconductor Science

and Technology 22, 055012 (2009).
[19] Z. Yang, J. Wang, and K. Chan, Journal of Physics:

Condensed Matter 22, 045302 (2010).

[20] E. A. Demler, G. B. Arnold, and M. R. Beasley, Phys.
Rev. B 55, 15174 (1997).

[21] M. Eschrig, Physics Today 64, 43 (2011).
[22] B. A. Bernevig, J. Orenstein, and S.-C. Zhang, Phys.

Rev. Lett. 97, 236601 (2006).
[23] T. D. Stanescu and V. Galitski, Phys. Rev. B 75, 125307

(2007).
[24] X. Liu and J. Sinova, Phys. Rev. B 86, 174301 (2012).
[25] C. P. Weber, J. Orenstein, B. A. Bernevig, S.-C. Zhang,

J. Stephens, and D. D. Awschalom, Phys. Rev. Lett. 98,
076604 (2007).

[26] J. D. Koralek, C. P. Weber, J. Orenstein, B. A. Bernevig,
S.-C. Zhang, S. Mack, and D. D. Awschalom, Nature
458, 610 (2009).
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[33] T. Schäpers, Superconductor/semiconductor junctions,
Vol. 174 (Springer, 2001).

[34] C. Beenakker, in Transport Phenomena in Mesoscopic
Systems, edited by H. Fukuyama and T. Ando, Vol. 109
(Springer, 1992).

[35] H. Tang, Z. Wang, and Y. Zhang, Zeitschrift fur Physik
B Condensed Matter 101, 359 (1997).

[36] J. K. J. Xin Liu and C.-X. Liu, To be published.
[37] K. D. Usadel, Phys. Rev. Lett. 25, 507 (1970).
[38] J. Rammer, Quantum Field Theory of Non-equilibrium

States (Cambridge University Press, 2007).
[39] Y.-J. Doh, J. a. van Dam, A. L. Roest, E. P. a. M.

Bakkers, L. P. Kouwenhoven, and S. De Franceschi, Sci-
ence 309, 272 (2005).


