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Control of double ionization of He by means of the polarization and carrier-envelope-phase (CEP)
of an intense, few-cycle XUV pulse is demonstrated numerically by solving the six-dimensional two-
electron, time-dependent Schrödinger equation for He interacting with an elliptically-polarized XUV
pulse. Guided by perturbation theory (PT), we predict the existence of a nonlinear dichroic effect

(∝ I3/2) that is sensitive to the CEP, ellipticity, peak intensity I , and temporal duration of the pulse.
This dichroic effect (i.e., the difference of the two-electron angular distributions for opposite helicities
of the ionizing XUV pulse) originates from interference of first- and second-order PT amplitudes,
allowing one to probe and control S- and D-wave channels of the two-electron continuum. We show
that the back-to-back in-plane geometry with unequal energy sharing is an ideal one for observing
this dichroic effect that occurs only for an elliptically-polarized, few-cycle attosecond pulse.

PACS numbers: 32.80.Fb, 32.80.Rm, 02.70.Dh, 02.70.Hm

The quantum dynamics of two-electron atomic systems
interacting with electromagnetic fields is a fundamental
problem. It is well-known that electron correlation un-
derlies the fundamental process of single-photon double
ionization of He [1]. Owing to recent advances in pro-
ducing XUV pulses by means of harmonic generation [2]
or free-electron lasers [3–6], the nonlinear process of two-
photon double ionization of He has been observed. The
key role played by electron correlation in two-photon dou-
ble ionization of He has subsequently been extensively
investigated (see, e.g., Refs. [7–23]). All these investiga-
tions concern the case of linearly-polarized XUV pulses.

Use of elliptically-polarized light opens the possibil-
ity of investigating effects and target properties that are
not accessible with linearly-polarized pulses. For exam-
ple, investigations of atomic and molecular ionization by
circularly- and/or elliptically-polarized ultrashort pulses
have revealed “counter-intuitive angular shifts” in ion-
ized electron angular distributions [24] (explained sub-
sequently as due to a dynamical phase shift [25]); im-
prints of target orbital structures on photoelectron angu-
lar distributions [26, 27]; and the ability of a circularly-
polarized pulse to serve as an attoclock for timing strong
field and attosecond ionization processes [28]. In these
works for atoms the three-dimensional time-dependent
Schrödinger equation (TDSE) is solved using the single-
active-electron approximation. General formulations for
single ionization of an atom [25] and double ionization
of He [29] by an arbitrarily-polarized, few-cycle XUV
pulse using perturbation theory (PT) have been vali-
dated numerically only for the case of a linearly-polarized
pulse [29–32] owing to its axial symmetry, which re-
duces the numerical effort. None of these many prior
numerical investigations has addressed the challenging

six-dimensional problem of a two-electron system inter-
acting with an arbitrarily-polarized XUV pulse.

In this Letter we study double photoionization (DPI)
of He by an intense, elliptically-polarized, few-cycle at-
tosecond XUV pulse. Our focus is the dependence of
the two-electron angular distributions on the carrier-
envelope-phase (CEP) and the helicity of the pulse both
by a PT analysis and by solving ab initio the six-
dimensional TDSE for He. Owing to the large band-
width of the few-cycle pulse, our numerical results reveal
a new type of CEP-sensitive polarization asymmetry that
is normally absent in single photon double ionization of
He. The asymmetry is present in the two-electron angu-
lar distributions under a change of the rotation direction
of the polarization of the attosecond pulse. The different
angular distributions for opposite helicities of the pulse is
our main finding, and we refer to this effect as “nonlinear
dichroism” (ND). Its physical origin, within the frame-
work of PT, is the interference of first-order (A1) and
second-order (A2) transition amplitudes [cf. Fig. 1(a)].
In the absence of electron correlation, A1 = 0 and ND
vanishes. Moreover, ND probes electron correlation on its
natural timescale since ND vanishes also for long pulses.

For the pulse parameters employed here, PT in the
pulse amplitude is valid and can be employed to both
guide numerical calculations and interpret their results.
A key fact is that experiments with elliptically-polarized
pulses provide information that is in principle inaccessi-
ble to experiments with linearly-polarized pulses. We
parameterize the pulse polarization vector, e, as e =
(ǫ̂ + iηζ̂)/

√

1 + η2, where ǫ̂ and ζ̂ = k̂ × ǫ̂ indicate re-
spectively the major and minor axes of the polarization
ellipse, k̂ is the pulse propagation direction, and η is the
ellipticity (−1 ≤ η ≤ +1). [Note that the circular polar-
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FIG. 1. (Color online) (a) Sketch of two-electron energy spec-
tra produced when He absorbs one- or two-photons from a sin-
gle 10- or 3-cycle pulse with ω=65 eV. For the 3-cycle pulse,
the one- and two-photon perturbation theory amplitudes (A1

and A2) overlap at ≈ 4 eV above the DPI threshold at 79 eV
owing to the large pulse bandwidth. (b) The in-plane back-to-
back (BTB) geometry for DPI of He with electron momenta
p1 and p2 in the polarization plane orthogonal to the laser
propagation direction k̂. The major and minor axes of the
polarization ellipse are defined by the unit vectors ǫ̂ and ζ̂.
The BTB angle, ϕ, is the angle between p̂1 and ǫ̂.

ization degree, ξ, of the pulse is ξ = 2η/(1 + η2).] Defin-
ing the triply differential probability (TDP) for DPI by
d3W/dEdΩp̂1

dΩp̂2
≡ W(p1,p2, e), where p1,2 are the

electron momenta and E = (p21 + p22)/2, dynamical and
phase information on the DPI process for a pulse with
ξ 6= 0 can be gained by measuring the difference of the
TDPs for pulses with the electric field F rotating in op-
posite directions, i.e., the dichroic effect [33]. We refer to
this difference as the dichroism ∆Wξ,

∆Wξ ≡ W(p1,p2, e)−W(p1,p2, e
∗). (1)

We describe the interaction of an atom in its 1Se

ground state with a short pulse electric field F(t) =
F0(t)Re[e e−i(ωt+φ)] having CEP φ, carrier frequency ω,
and temporal envelope function F0(t). We neglect spin-
orbit interactions, so that both amplitudes A1 and A2 are
scalars independent of the quantization axis. We adopt
the same PT assumptions as in Refs. [25, 29]. Under
these assumptions (see the Supplemental Material [34]
for a discussion), the TDP equals

W(p1,p2, e) ≈ C[|A1|
2 + 2Re (A∗

1A2)], (2)

where C is a normalization factor. The validity of Eq. (2)
is determined by comparing with TDSE calculations.
Using Eq. (2) in (1), we see that ∆Wξ is comprised

of two very different parts. One of them, ∆WD1, results
from the interference of different terms in the first-order
amplitude A1; it is the analog of conventional circular
dichroism in single photon double ionization of He [1, 35–
41] and is linear in the pulse intensity I. The second part,
∆WD12, is due to interference of the first- and second-
order amplitudes, as occurs in single electron short-pulse
ionization [25]. It is a nonlinear dichroic effect since
∆WD12 ∝ I3/2. By choosing a geometry in which ∆WD1

vanishes, one can thus measure the ND term ∆WD12 di-
rectly. Such a geometry is back-to-back (BTB) emission

of the two electrons [1]; cf. Fig. 1(b). For other geome-
tries, PT indicates that the linear dichroism term ∆WD1

is generally larger than ∆WD12. Note that ∆WD12 van-
ishes upon averaging over the CEP φ; it also vanishes
whenever the first-order amplitude vanishes due to se-
lection rules. In the latter case ND originates from the
interference between different terms in the second-order
amplitude. This higher-order dichroism, ∆WD2 ∝ I2,
has the same general properties as ∆WD12, and its role
is elucidated by our numerical calculations below.
The first-order PT amplitude, A1, for single-photon

DPI to the continuum 1P o-state of the ionized electron
pair with energy E can be parameterized as in Ref. [29]:

A1 = e−iφ [fg(ρ)(p+ · e) + fu(ρ)(p− · e)] , (3)

where ρ ≡ (p1, p2, θ), θ is the mutual angle between the
electron momenta, and p± ≡ (p̂1 ± p̂2)/2 (cf. [34] for
discussion). The Pauli exclusion principle and parity
conservation require the functions fg,u to be symmet-
ric and antisymmetric, i.e., fg(p2, p1, θ) = fg(p1, p2, θ)
and fu(p2, p1, θ) = −fu(p1, p2, θ). Note that A1 vanishes
for equal energy sharing (p1=p2) in the BTB geometry
(p̂1 = −p̂2) since in that case both fu(ρ) and p+ vanish.
For an “in-plane geometry” (i.e., p1, p2, and e all lie in

the polarization plane), the first-order circular dichroism,
∆WD1, depends only on the degree of circular polariza-
tion ξ and is independent of both the CEP and the ori-
entation (i.e., ϕ) of the polarization ellipse with respect
to the electron momenta, as follows from the explicit ex-
pression for ∆WD1 that one obtains using (3):

1

C
∆WD1 = |A1(e)|

2−|A1(e
∗)|2 = ±ξ sin θ Im[f∗

g fu]. (4)

Here ± is the sign of the triple product (k̂ · [p̂1 × p̂2]).
Note that ∆WD1 vanishes for the BTB geometry (θ = π).
For a sufficiently short pulse, one- and two-photon

transitions (described by the first- and second-order am-
plitudes, A1 and A2) may each doubly-ionize an initial
1Se-state leading to two-electron continuum states with
the same energy E [cf. Fig. 1(a) for the 3-cycle case].
(Note that A2 includes both two-photon absorption and
absorption/emission involving two photons.) By electric
dipole selection rules, A1 leads to electron pairs in 1P o

states, while A2 leads to 1Se- and 1De-states. In con-
trast to ∆WD1, the ND part of Eq. (1), ∆WD12 [obtained
within PT for unequal energy sharing and the BTB in-
plane geometry, cf. Fig. 1(b)], depends not only on ξ but
also on the CEP, the orientation ϕ of the polarization el-
lipse, and on the product ξℓ, where ℓ = (1− η2)/(1+ η2)
is the degree of linear polarization. As explained in the
Supplemental Material [34], ∆WD12 equals

∆WD12 = Cξ
√

2/(ℓ+ 1) sinϕ Im
{

f∗

u

[

e−iφ (2hℓ− h−

×(ℓ cos 2ϕ+ 1)) + eiφ
(

2h′ + h′

− (ℓ cos 2ϕ+ 1)
)]}

, (5)
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where h, h−, h
′, and h′

− are CEP- and η-independent
dynamical parameters describing the amplitude A2 [34].
Equation (5) shows that the ND term ∆WD12 involves
the product of the dynamical parameter f∗

u of A1 [cf.
Eq. (3)] and the dynamical h-parameters [34] characteriz-
ing A2; therefore ∆WD12 vanishes unless the pulse band-
width is sufficiently large that these parameters of A1

and A2 are nonzero at the same energy.
Unlike for linearly-polarized pulses, for elliptically-

polarized pulses the angular momentum projection M
is not conserved. This results in an “M -mixing prob-
lem” [42, 43] that we treat using ideas introduced in [43]
and developed further in Refs. [24, 26–28, 44]. We
solve the six-dimensional TDSE using a Finite-Element
Discrete-Variable Representation and the Real-Space-
Product algorithm [45] together with Wigner rotation
transformations at each time step to the frame of the
instantaneous electric field [24, 26–28, 42–44]. We cal-
culate the TDP, W(p1,p2, e), for ionization of two
electrons that share the energy E = E1 + E2 above
the DPI threshold, by projecting the continuum part
ΦC(r1, r2, φ, e) of the two-electron wave packet (at a
time ≈20 a.u. after the pulse, ensuring convergence)

onto field-free states, Ψ
(−)
p1,p2

(r1, r2), which are uncorre-
lated symmetrized products of two Coulomb functions
for Z = 2 [29, 46],

W(p1,p2, e) = |〈Ψ(−)
p1,p2

(r1, r2)|ΦC(r1, r2, φ, e)〉|
2. (6)

Our calculations include 199 partial waves for four values
of L: 0 ≤ L ≤ 3, so that effects of the small third-order
PT amplitude are included. We assume a pulse enve-
lope F0(t) = F0 cos

2(πt/T ) with −T/2 ≤ t ≤ T/2, where
T ≡ n(2π/ω) is the total pulse duration for n = 3 opti-
cal cycles. The temporal full-width at half-maximum of
the pulse intensity profile is 0.364T = 1.1 cycles, which
is comparable to those of the linearly-polarized, single-
cycle pulses achieved experimentally [47, 48]. The spec-
tral width ∆ω ≃ 1.44ω/n [18] of the pulse intensity pro-
file is 31.2 eV for ω = 65 eV (T = 190.9 as) and our
peak pulse intensity is 2 PW/cm2. Significant interfer-
ence, for ω = 65 eV, occurs at energies E ≈ 4 eV [29]
above the DPI threshold energy (≈ 79 eV) at which the
PT amplitudes A1 and A2 are comparable [cf. Fig. 1(a)].
We present results of our numerical calculations for

the BTB geometry [Fig. 1(b)] since the first-order circu-
lar dichroism ∆WD1 vanishes [cf. Eq. (4)]. An additional
virtue of the BTB scheme is that it guarantees a high ac-
curacy of our numerical method in the XUV regime (with
convergence of our results for a relatively low number of
electron angular momenta) since the torque along the
BTB axis is always zero [49]. All but one of the results
in Figs. 2 – 4 are given for unequal energy sharing.
The strong CEP-dependence of the TDPs W(p̂, e) ≡

W(p1,p2, e)|p̂2=−p̂1
[cf. Eq. (6)] for ξ = ±0.8 are shown

in Figs. 2(a)-(d) for four CEPs. For each CEP, compar-
ing the TDPs for ξ → −ξ (or equivalently, e → e∗),
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FIG. 2. (Color online) The TDP W(p̂, e) (6) (in units of
10−5 a.u.) vs. ϕ [cf. Fig. 1(b)] for DPI of He by a three-cycle
XUV pulse (with ω = 65 eV, I = 2 PW/cm2, T = 190.9 as,
a cos2 envelope, and an ellipticity η = ±0.5 or ξ = ±0.8) for
four CEPs: (a) φ = 0, (b) φ = π/3, (c) φ = π/2, (d) φ = 5π/6.
All results are for the back-to-back geometry and unequal
energy sharing (UES): E1 = 0.7 eV and E2 = 3.3 eV. In (c)

we give for comparison W
(L=1)(p, e); see text for discussion.

one sees that the angular distributions, W(p̂, e) and
W(p̂, e∗) are mirror images of one another, which is the
dichroic effect. For fixed CEP and ξ, the angular dis-
tributions are highly asymmetric under the transforma-
tion ϕ → ϕ + π (or p̂ → −p̂). In contrast, Fig. 2(c)
shows the L = 1 part of the TDP, W(L=1)(p̂, e), which
we find is CEP-independent and symmetric under the
transformation ϕ → ϕ+ π. This is consistent with first-
order PT, in which W(L=1) ∝ |A1|

2 [cf. Eq. (3)]. In
the PT limit in which W(p̂, e) ∝ |A1 + A2|

2, the dif-
ference W(p̂, e) − W(−p̂, e) thus measures directly the
cross term 2Re(A∗

1A2), as in the case of DPI of He by a
linearly-polarized, few-cycle pulse [29].

The angular dependence of the dichroism ∆Wξ (1)
is plotted in Figs. 3(a, b) for two CEPs; its depen-
dence on ellipticity and intensity for φ = π/2 is shown
in Figs. 3(c, d). One sees that ∆Wξ, which includes
both the circular dichroism term ∆WD1 (4) and higher-
order dichroism terms [e.g., ∆WD12 (5) and ∆WD2],
is highly sensitive to the CEP, decreases with decreas-
ing ellipticity, and scales approximately as I3/2 with in-
tensity, with deviations originating from higher order
terms. To estimate the contributions of each term, we

plot in Figs. 3(a, b) ∆W
(L)
ξ for the odd and even L-

components of the two-electron continuum wave packet,

where ∆W
(L=1)
ξ ≈ ∆WD1, ∆W

(L=0,2)
ξ = ∆WD2, and

thus ∆WD12 ≈ ∆Wξ −∆W
(L=1)
ξ −∆W

(L=0,2)
ξ . We see
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FIG. 3. (Color online) Angular dependence of the dichro-
ism, ∆Wξ, for two CEPs: (a) φ = 0, and (b) π/2.

The contributions of ∆W
(L=1)
ξ ≈ ∆WD1, ∆W

(L=0,2)
ξ =

∆WD2, and ∆WD12 are also shown (see text for discus-
sion). (c) Ellipticity-dependence of ∆Wξ. (d) Pulse intensity-

dependence of ∆Wξ; results are scaled by (I/Ir)
3/2, where

Ir = 2 PW/cm2. Unless otherwise specified, φ = π/2,
ξ = 0.8, I = 2 PW/cm2, E1 = 0.7 eV, and E2 = 3.3 eV.

that ∆W
(L=1)
ξ is very small, consistent with 1st-order PT

in which ∆WD1 is zero in the BTB configuration. The

non-zero ∆W
(L=1)
ξ is CEP-independent, as expected for

interference between 1st- and 3rd-order PT amplitudes.

The significance of the 2nd-order dichroism ∆WD2

term depends on the CEP. For φ = π/2 [cf. Fig. 3(b)],
∆WD2 ≪ ∆WD12 so that ∆Wξ ≈ ∆WD12 at all angles.
However, for a CEP φ = 0 [cf. Fig. 3(a)] the magni-
tude of ∆WD2 is comparable to that of ∆WD12, so that
∆Wξ ≈ ∆WD12 + ∆WD2. Thus for some values of ϕ,
the 2nd-order part of the TDP (∝ |A2|

2) must be in-
cluded in the PT analysis. Our results in Fig. 3 confirm
the PT prediction that ∆WD12 ∼ sinϕ [cf. Eq. (5)], i.e.,
∆WD12 = 0 when electrons are emitted along the major
axis of the pulse polarization ellipse. Figures 2 and 3
show also that ∆WD2 = 0 for ϕ = 0, π/2, π, 3π/2, indi-
cating that ∆WD2 ∝ sinϕ cosϕ, as predicted by PT [34].

In Fig. 4(a) we show that the relative dichroism,
∆Wξ/[W(p̂, e) +W(p̂, e∗)], is sensitive to the CEP and,
for nearly all CEPs, is substantial. Its suppression for
φ = π/3 is consistent with the similarity of the TDPs
for ξ = ±0.8 shown in Fig. 2(b); its large values near
ϕ = π stem from the small values of the TDPs there. In
Figs. 4(b, c, d) respectively we see that it decreases as
one approaches equal energy sharing and as either the
ellipticity or the intensity decrease.
In summary, by solving ab initio the six-dimensional

two-electron TDSE for DPI of He by an elliptically-
polarized, intense few-cycle attosecond pulse, we have
analyzed the dependence of the TDP on the pulse polar-
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FIG. 4. (Color online) Angular dependence of the relative
dichroism (RD), ∆Wξ/[W(p̂, e)+W(p̂, e∗)], for the BTB ge-
ometry [cf. Fig. 1(b)]. Unless otherwise specified, φ = π/2,
ξ = 0.8, I = 2 PW/cm2, E1 = 0.7 eV, and E2 = 3.3 eV.
The panels show its sensitivity to (a) the CEP, (b) the energy
sharing, (c) the ellipticity, and (d) the pulse intensity.

ization and CEP. For such few-cycle pulses, a new type of
nonlinear (in the field intensity) dichroic effect in the two-
electron angular distributions [Eq. (1)] is predicted that
can serve as a temporal measure of electron correlations
(as it vanishes for long pulses). Our essentially exact nu-
merical results show that, for pulse intensities that may
be realized in the near future, PT can be successfully
used to predict and explain characteristic features of this
new polarization effect, which originates primarily from
interference of the 1st- and 2nd-order PT amplitudes.
Our results show that ND is highly sensitive to the pulse
CEP. Accordingly, by tuning the CEP one can vary the
relative contributions to the total ND of different PT
amplitudes, thereby allowing one to determine their rel-
ative magnitudes. In the future, ND may be observed
experimentally using reaction microscope techniques [50]
with detection of electrons ionized in opposite directions
in the pulse polarization plane for two helicities: ±ξ. We
note that linear dichroic effects in He have recently been
employed to determine the polarization of an XUV free-
electron laser beam [51]. The ND predicted here, owing
to its dependence on the large bandwidth of attosecond
pulses and its sensitivity to the CEP, may be valuable for
characterizing these much shorter pulses.
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