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Abstract: 

In recent years new interest in Cherenkov radiation has arisen based on progress in its new 
applications like biomedical imaging, photonic structures, metamaterials and beam physics. 
These new applications require Cherenkov radiation theory of short bunches to be extended to 
rather more complicated media and structures than considered originally. We present a new 
general approach to the analysis of Cherenkov fields and loss factors for relativistic short 
bunches in arbitrary slow wave guiding systems. This new formalism is obtained by considering 
a general integral relation that allows calculation of the fields in the vicinity of the charge. The 
proposed approach dramatically simplifies simulations using analytical fields near the moving 
source of Cherenkov radiation. 

Introduction.  
Cherenkov radiation (CR) from particle bunches is of considerable importance in many areas of 
fundamental and applied physics. Recent experiments and corresponding theoretical study were 
concentrated on CR sources ranging from low terahertz to visible light [1,2,3]. It was shown that 
an optical pulse can be used as a CR source [4], and that surface polaritons can be transformed 
into CR as well [5]. CR in metamaterials [6] and photonic crystals [7] was a subject of 
theoretical and experimental studies. Recently CR has been applied for biomedical imaging 
purposes [8]. The new research in the theory of CR [9] is also concentrated on radiation in a 
finite region of space, the Tamm problem and radiation of electric, magnetic and toroidal dipoles 
[10].  

The widest use of CR is in accelerator physics. Relativistic, high intensity and small emittance 
electron bunches are the basis of linear collider [11,12] and FEL [13] projects. These bunches 
excite Cherenkov wakefields as long as electrons pass through the accelerating structures or 
other longitudinally extended components of a beam line (pipes, collimators, bellows) [1,14-22].  

Theoretical analysis of CR commonly considers a “short bunch” approach. This is perfectly in 
agreement with Cherenkov generating systems, where the moving charge size is much less than 
the fundamental wavelength [9,10,16]. This includes Cherenkov imaging and capillary 
generation if the high frequency spectral range is not of interest [2-8]. This also holds for 
accelerating structures and other accelerator components, where the longitudinal size of electron 
bunches are significantly smaller than the lowest wavelength of the wakefields excited [1,14-
16,19]: this defines a “short” bunch in this context.  

We propose a new theoretical approach that can be used for obtaining direct analytical formulas 
for electromagnetic field components at the position of a point-like Cherenkov radiation source 
that can be either a short electron bunch or laser pulse. The corresponding energy losses can be 
also calculated analytically. Here we define the loss factor as the modulus of the longitudinal 



electric field at the point-like charge position divided by the absolute value of the charge 
[1,14,16]. For simplicity we consider a point-like electron bunch passing through waveguides 
lined with arbitrary slowdown layers. It will be shown that the loss factor of the short bunch does 
not depend on the waveguide system material and is a constant for any given transverse 
dimensions and cross-section of the waveguides. The equivalence and exact matching of the loss 
factor of beams passing through various waveguide configurations is analyzed. With the 
proposed approach one can use a relatively simple method for the calculation of the field 
components and loss factors using an integral relation, or “relativistic Gauss theorem” based on 
the cylindrical slow wave structure model. For various cross-section geometries one can obtain 
the loss factor by using a conformal mapping from the solution for the cylindrical case.  

Cherenkov wakefields and loss factors. 
The equivalence of the loss factor of the beams passing through various types of waveguides 
with thin slowdown regions (features on the waveguide interior other than a smooth perfectly 
conducting surface) have been noted previously [14,15]. Indeed, the loss factor attains exactly 
the same value for all disk-loaded cylindrically symmetric structures [14,17,18,22], for a 
resistive pipe [1,16,26], a pipe with small periodic corrugations [19,20], and a cylindrical metal 
structure with a thin dielectric layer [19-21,23]. The same equivalence of the loss factor can be 
found for non-cylindrical structures as well [14]. In a planar or rectangular all-metal waveguide 
with resistive walls [16,22], small corrugations [14,15] or a thin dielectric liner [23,24] the loss 
factor would be the same for structures with equal apertures: it is a constant that is dependent on 
transverse dimensions but independent of the material properties. 

 
Figure 1. Cherenkov wakefield cones of a point-like charge moving along (a) a waveguide with 
a thin arbitrary slowdown layer on a metal surface; (b) waveguide with a thick layer; (c) infinite 
medium.  

The wakefield experienced by a point-like charge (loss factor) in a waveguide of fixed transverse 
dimensions is independent of the detailed properties of the slowdown layer: this is a strong 
indication that a more general theory of loss factors can be obtained. We have developed a new 
approach to the loss factor analysis of relativistic point-like charges with only the assumption 
that the phase velocity of the CR in the waveguide layers is less than the speed of light (the 
bunch is assumed relativistic, =V c ).  

Consider an ultrarelativistic point charge located on the plane  z=ct moving with the speed of 
light at a center of a vacuum channel with azimuthal symmetry and radius r=a (Fig.1a,b). (Other 
geometries besides cylindrical can be calculated using the conformal mapping technique that will 
be discussed below.) Electric and magnetic fields of the moving charge are present inside the 
channel, but the field on the plane outside the cylindrical channel r>a, z=ct, is zero. Here we 



consider that the field of the point-like charge on the plane vanishes because of (1) the presence 
of slowdown walls or layers outside the channel so that Vph<c, and (2) the bunch is 
ultrarelativistic , γ→∞. The combination of these two factors inevitably delays the CR fields at 
radii r>a away from the plane, z=ct, moving with the bunch. This allows the formulation of a 
general integral relation for the loss factor of a short relativistic bunch passing through an 
arbitrary waveguide, independent of the channel shape, the properties of the walls or its materials 
(as in Fig.1a,b)  if Vph<c at r>a.  

Moreover, a special conclusion of this approach is that the loss factor of waveguides with 
dielectric, corrugated or resistive slowdown regions does not depend on the layer thickness and 
gives the same results as those for the loss factor of the bunch passing the channel in an infinite 
dielectric or any other media, Fig.1c. Note that the CR of the bunch moving through an infinite 
medium is the same as for a particle passing along a channel inside an unbounded dielectric, 
Fig.1c, if the channel transverse dimensions are close to the CR wavelength [9,25]. Finally, if the 
fields in the area outside the vacuum channel vanish for any reasons other than ultra-relativistic 
limit (diffraction shadow, etc.) the same integral relations will hold. 

Field-particle interactions in high energy physics are usually described in terms of wake and 
impedance formalism: more details can be found elsewhere [1,16,26]. Consider a point charge 
moving with the speed of light along the axis of a vacuum accelerating structure. A test charge 
also moving with the speed =V c  at a distance s  behind this point-like bunch will experience 
fields of the first charge if the bunch separation s  is greater than the so-called “catch-up” 
distance [1,16,26]. To describe the interaction between the first and second particle a function 

( )W s  called the wake potential was introduced [1,16,26]. Vanishing of the wake functions 
everywhere in front of a relativistic particle is a consequence of causality: the wake potential is 
equal to zero for 0<s . Wake potentials can be expressed using an eigenmode decomposition, 
where ( )nw s  - is the wake function of the nth mode : 

( ) ( )n n
n

W s w s=∑κ ,      (0) n
n

W= =∑κ κ .                                 (1) 

Here nκ  is the loss factor for the nth eigenmode. The total loss factor κ is usually defined as (1). 
In the case of a thin corrugation layer [14,16-21] or dielectric [14,19,21,24] the total loss factor is 
equal to the loss factor of the fundamental mode of the structure. The expression for the loss 
factor of a conductive cylindrical pipe, Fig.2a, can be found elsewhere [14,16,26]. The loss 
factor of a relativistic point-like charge passing through cylindrical, cκ , [14,16-19] and planar, 

pκ , [15] structures (Fig.2a and Fig.2c) can be expressed as: 
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where 0ε  is the dielectric permittivity of vacuum, ca  is the pipe radius, pa  is the vacuum half 

gap. Using the simple integration over the structure cross section presented in the next section we 
can prove that formulas (2) and (3) can be applied in the case of a thick layer and thus shows that 



the material thickness and properties do not affect the total loss factor. Moreover, the calculation 
method is quite simple and is based on an analog of Gauss's law. (We neglect for the moment 
frequency dispersion.) 

Integral transformation. 
Let us consider the circulation of the magnetic field on the metal boundary of a waveguide using 
Maxwell- Ampère's law it could be written as: 

 · z
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ρ
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∂⎛ ⎞= +⎜ ⎟∂⎝ ⎠∫ ∫∫H l , (3) 

where the integral on the right hand side is calculated over the cross section S⊥  of the 
waveguide, and the left hand side integral is taken along the metal sleeve of the waveguide. Here 

( ) ( )0 0( )= − − −q z Vt x x y yρ δ δ δ  is the charge density and zV = ⋅V e  - component of the charge 
velocity vector codirectional with z - axis. Now consider the waveguide cross sectional area qS⊥  
that includes the charge. If we assume that our particle is moving with the speed of light V c≈ , 
and using the fact that in the medium the phase speed of light is lower than the speed of the 
moving charge, we can conclude that in the cross section qS⊥  the nonzero field is localized only 

in the vacuum gap. From this position in the limit V c→ , substituting Vt zζ = −  and rewriting 
(3) for qS⊥  we arrive at:  
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Here the integral on the right side is calculated along the metal surfaces of the waveguide 1l  that 
are not covered by the material, and zD  is the z  component of the electric displacement vector 
that corresponds to the Cherenkov field. In the case where uncovered metal walls are not present 
one can see that as long as the nonzero field is localized only in the vacuum gap, the integral on 
the right side is equal to zero. Now decompose the integral on the left side into an integral over 
the vacuum channel VS  and an integral over DS , the cross section of the medium: 
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Integration of (5) with respect toζ , with ( ) 0V
zE −∞ =  and ) 0(D

zE − =∞  leads to 

 
0

( ) ( ) ( )
V D

V D
z z

S S

qE dS x dx E dS
ζ

ζ δ ε ζ
ε −∞

= − +∫∫ ∫ ∫∫ . (6) 

If now we set 0=ζ  because the flux through DS  is zero it immediately gives  
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and in the case 0+=ζ  a factor of 2 has to be applied. Formula (7) gives a simple connection 
between the longitudinal electric field in the cross section of the bunch and the total bunch 
charge, which looks like a classical Gauss’s law. Using this expression we will show that 
radiation losses and transverse distribution of the electric field can be found using the well-
known technique of conformal mapping. 

Cylindrical waveguide, longitudinal loss factor 

Consider a round cross-section of the metal waveguide with an arbitrary nonuniformity along the 
metal walls and a vacuum channel along the axis, Fig. 2a.  

 

Figure 2. Cross section of the considered metal waveguides with slowdown layers (yellow): (a) 
cylindrical; (b) cylindrical with displaced charge; (c) planar; (d) square.  

It is easy to show that in the case of a cylindrical structure and V c→  ( )V
zE ζ  does not depend 

on transverse coordinates when the particle is moving along the z -axis of a cylinder. Thus for a 
cylinder from (7) we have: 
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Here ca is the radius of the vacuum gap. It should be noticed that no assumptions on the 
thickness of the loading configuration (dielectric, corrugation, resistivity etc.) were used while 
obtaining expressions (7) and (8). Typically only the thin layer approximation is considered in 
the loss factor analysis [14,16,20-21,23]. Based on the proposed approach one can conclude that 
the expressions (7) and (8) are true for any layer thickness including unbounded media as in 
Fig.1c.  

Cylindrical waveguide. Kick factor. 
If the beam traverses the waveguide off-axis, Fig.2b, a deflecting field will affect the beam [14-
16]; if the offset distance of the beam is relatively small, only the dipole mode of almost the 
same frequency as the fundamental mode will be excited. If the beam is deflected with a larger 
offset, additional multipoles will contribute to the dipole deflection force [16,21]. 

The deflecting force factor or the “kick” factor for the cylindrical waveguide with an arbitrary 
slowdown layer will be presented in this section. Consider a conformal transformation of a circle 



| | ca≤ω on a circle | | caψ ≤  such as that the point 0r  ( 0Arg[ ] 0r = ) of the first circle transforms 
into the center 0z =  of a second circle. The corresponding mapping is then given by: 
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We consider now an integral over the vacuum gap cross-section along the ψ - plane and rewrite 
it for the ω -plane: 

 c c
z zE dS E JdSψ ω=∫ ∫ . (10) 

Here J  is the determinant of the Jacobi matrix, dSψ  is the elementary square of the ψ –plane, 

and dSω  is the surface square element on the ω -plane. Using the fact that a conformal 
transformation is an analytic function one can write 
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Assuming r=ω  and [ ]Arg =ω ϕ  one can obtain 
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As long as c
zE  is a constant we can conclude from (10) that the field distribution dp

zE  over the 
ω -plane can be found as 0, , ) , )( (dp c

z zE r r J r E=ϕ ϕ . Thus at the origin ( 0, 0, 0= = =r r ϕ ζ ) the 
longitudinal field can be written as: 
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that corresponds to [16]. The radial part of the Lorentz force can be calculated using the 
Panofsky-Wenzel theorem [16,26]. The force derivative at the origin, also known as the kick 
factor, can be found if 0r r=  and 0=ϕ . Using (13) we obtain: 
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One can see that for small offsets 0 / 1cr a <<  the first term of the kick factor (15) is equal to the 
well-known result for the kick factor of a pipe with small corrugations or resistive walls as 
expected [14,16,19-21,23]. Note the divergence of (14) at 0 / 1cr a →  that corresponds to the 
dispersion-less model of the slowdown layer. The same kick factor divergence is observed with 
the mode decomposition simulations [16,21]. 

Square waveguide. Longitudinal loss factor. 

For a point-like charge moving along the symmetry axis in between two infinitely long plates, 
(Fig.2c.) the conformal transformation of a strip onto the interior of a circle allows to obtain the 
longitudinal loss factor corresponding to the right part of formula (2) [14-15]:  
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At the same time, the loss factor for a loaded square cross-section metal structure (Fig.2d) has 
not been previously calculated and it can be obtained using the Christoffel-Schwarz integral that 
gives a conformal mapping of the inner part of a circle | | caψ <  to a square with each side equal 
to 2 ca : 
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Here ( )Γ x  is the Euler Gamma function. Taking into account that exp( )r iψ ϕ= one can write 
determinant of a Jacobi matrix for transformation of an elementary square as: 
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Taking into account (10) we have  
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where the right part of (18) is taken at the position of a point-like charge ( 0=r ); and we have 
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Discussion of the results. 

Using (8), (16) and (20) one can obtain an expression for the loss factors of the point-like 
charges for the cylindrical cκ , planar pκ  and square sqκ  metal waveguides with any kind of 
nonuniformity or slowdown material along the metal walls. Corresponding formulas are 
presented in Table 1 including the kick factor (15) for the cylindrical waveguide c

⊥κ . Meanwhile 
the wake potentials at 0+=ζ  differ from the loss factors by a factor of 2 [1,16,26].  

Formulas (2), (3) for cylindrical and planar waveguides and those of Table 1 look identical, but 
we emphasize here that (2), (3) as derived in references [14-16,18-23,26] used assumptions on 
the particular mechanism (corrugation, dielectric) used to form a slow wave structure while our 
formulas presented in Table 1 were obtained in the general case formula (7). The kick factor 
formula (15), Table 1, was obtained for the full solution including all multipoles, not only 
dipoles. Also, at first the loss factor formula, (20), Table 1, was derived here for a waveguide 
with the square cross-section metal wall completely lined with the slowdown layer. This formula 
can be used for dielectric wakefield acceleration or THz generation devices [2,24,27-28]. In 
addition to the resistance and roughness, the waveguide wall may have an oxide layer, which is 
usually a dielectric. This effect for very short bunches was previously studied only in a round 
pipe [20,23]. 

Table 1. Longitudinal loss factors for various cross sections of the waveguides, Fig. 2 (a,c,d), 
and the kick for cylindrical waveguides (small offsets), Fig 2(b).  

cylindrical planar Square cylindrical; kick factor 

2
0

1
2

=c
ca

κ
π ε

 
2

2
0

1
2 16

=p
ca

πκ
π ε

 2
0

10.86
2

=sq
ca

κ
π ε

 ( )4
2

0
0

2 ( 31 )/⊥ = + c
c

ca
r aκ

π ε
 

Loss factor determination often becomes a complicated problem and involves massive numerical 
mode summations. With the new approach shown above, one can use relatively simple and yet 
powerful tools for the calculation of the asymptotical loss factors. Using the integral relation on 
the basis of the cylindrical slowdown waveguide model the full loss factor of the structure can be 
calculated. For other cross-section geometries one can obtain the loss factor by use of a 
conformal mapping that allows finding the ratio of the known loss factor for a cylindrical 
structure to that of the other structure of interest. The loss factor in this case is simply the value 
of the Jacobi matrix determinant at the origin, and the Jacobi determinant away from the origin 
gives the transverse structure of the loss factor.  

For many practical applications impedance boundary conditions (IBC) or Leontovich conditions 
are commonly used [1,14-16,26]. The question had arisen [29] whether  the integral relation 
method, formula (7), can be applied for IBC. In [30], it was demonstrated that the IBC can be 
also applied if integral relation (7) is used. It was first shown that the theorem (7) can be derived 
directly from the Maxwell equations even if (instead of the standard boundary conditions) only 



the IBC approximation is applied. The same approach was then extended to the solution for a 
dispersive medium. Finally, wakefield calculations for the Leontovich conditions were carried 
out for an arbitrary slowdown waveguide using both the standard mode decomposition method 
and the proposed integral theorem formula (7), and were found to give identical results [30].  

In conclusion, we considered the Cherenkov fields and loss factors of a point-like electron bunch 
passing through waveguides lined with arbitrary slowdown layers. It was shown that the 
Cherenkov loss factor of the short bunch does not depend on the waveguide system material and 
is a constant for any given transverse dimensions and cross-sections of the waveguides. The 
exact matching of the loss factor of the beams passing through various types of waveguides is 
analyzed. It was shown that with the proposed approach one can use a relatively simple method 
for the calculation of the total loss factor using an integral relation based on the cylindrical 
slowdown waveguide model.  
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