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Mechanisms of high-harmonic generation from crystals are described by treating the electric field
of a laser as a quasi-static strong field. Under the quasi-static electric field, electrons in periodic
potentials form dressed states, known as Wannier-Stark states. The energy differences between the
dressed states determine the frequencies of the radiation. The radiation yield is determined by the
magnitudes of the inter-band and intra-band current matrix elements between the dressed states.
The generation of attosecond pulses from solids is predicted. Ramifications for strong-field physics
are discussed.
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Advances in intense pulsed lasers have opened up an
avenue to field-induced non-perturbative nonlinear opti-
cal phenomena, such as high-harmonic generation (HHG)
and attosecond pulse generation [1, 2]. The scope of
these strong-field phenomena has been mainly focused
on gaseous media, and was extended to solids recently
[3–15]. In particular, HHG from wide-band-gap semi-
conductors under illumination of low-frequency laser has
been reported [3, 4], which opened the door to extreme
wavelength conversion employing condensed matters.

The non-perturbative character of the HHG manifests
itself as plateau structures in its energy spectrum, which
provide insights into the electronic dynamics on attosec-
ond timescales. The HHG process of gases is well de-
scribed by the three-step model: field ionization, accel-
eration, and recollision [16, 17]. The cutoff energy of the
resultant radiation plateau is the sum of the ionization
potential and the maximal kinetic energy gained by the
electron during excursion, and thus scales quadratically
with the laser field amplitude. In case of solids, however,
this enlightening three-step model is not applicable, as is
evidenced by the experimentally observed linear scaling
of the cutoff energies to the field [3, 4].

To account for the mechanism of HHG from solids,
several models have been proposed. (1) For example,
Ghimire et al. considered the intraband current as the
source of HHG [3, 18]. Due to the non-parabolicity of the
conduction-band energy, the intraband current contains
harmonics of the Bloch frequency ΩB ≡ qaE/~, where
q is the unit charge, a is lattice constant of the crystal,
and E is the electric field amplitude of the laser. This
model explains the linear scaling of the cutoff energy with
the laser field amplitude, but cannot treat the additional
offset observed in the cutoff energy [3, 4]. (2) Another
approach is to consider the inter-band polarization as the
source [6–8]. In this model, highest-energy photons are
emitted at the top of the bands: this gives the upper
limit of the HHG energy, but does not explain the linear

scaling.

These currently existing models cannot fully explain
the experimentally observed scaling of the cut-off energy
because inter- and intra-band light-matter interactions
are considered separately. When the laser field is strong
and the interaction is non-perturbative, the interplay be-
tween the inter- and intra-band contributions cannot be
neglected, in analogue to breakdown of the rotating wave
approximation for carrier-wave Rabi flopping in two-level
systems [19–21]. The importance of avoiding this artifi-
cial separation for a proper prediction of the HHG radia-
tion frequency is found in numerical simulations based on
the integration of the time-dependent Schrödinger equa-
tion (TDSE) [7, 8, 13–15]. The validity of such a numer-
ical approach is confirmed by its agreement with exper-
iments [4]. Various proposals have been made based on
the TDSE, for example to isolate an attosecond pulse by
using two-color laser pulses [22]. These numerical simu-
lations, however, require further interpretation of the re-
sults, and a more insightful way of determining the HHG
cutoff energy has been eagerly demanded [6].

In this study, we propose a semi-analytical model to
gain insight into the physical processes involved in the
generation of HHG radiation in solids, and to understand
the experimentally observed cutoff energies. The essen-
tial point of our model is to consider electronic states
dressed with a quasi static electric field via both inter-
and intra-band couplings, which are known as Wannier-
Stark (WS) localised states [10, 11, 23]. The energy spec-
trum and the wave functions of these dressed states deter-
mine the radiation energy and yield of the HHG. We show
that the highest energy photons from solids are emitted
when the laser field peaks, which suggests participation
of the adiabatic WS states. Based on this understand-
ing, we predict the possibility of generation of isolated
attosecond pulses from solids.

Electrons in a periodic lattice interact with the opti-
cal electric field through inter-band and intra-band cou-
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FIG. 1: (Color) (a) Schematic of the dynamics of electrons in
the valence and conduction bands. The electron experiences
both inter-band transition and the intra-band acceleration.
(b) Coordinate-space representation of the system under a
static electric field. (c) Quasi-energy spectra as functions of
the quasi-static electric field. (d) Energy spectra of the radi-
ation as functions of the quasi-static electric field. The color
shows the intensity amplitude of the current matrix elements.
(e) Numerically obtained current density spectra as functions
of the peak electric field of the incident laser pulse. (f) Inte-
grated values of the intensity amplitude of the current matrix
elements in (d) over the same laser waveform as in (e).

plings, which are found in the Schrödinger equation for
semiconductors [4, 13, 21]:

H(t) =

∫ 2π

a

0

dk

[

∑

λ

ελ(k)â
†
λ,k âλ,k

− E(t)
[

∑

λ,λ′

µλλ′(k)â†λ,kâλ′,k + iq
∑

λ

â†λ,k∇kâλ,k

]

]

.(1)

Here âλ,k is the annihilation operator of an electron with
a wavenumber k, the indices λ and λ′ label the bands.
ελ(k) is the electron energy of band λ at k, µλλ′(k) is the
inter-band dipole moment between the bands λ and λ′

at k. The three terms describe the energies of the band
electrons, the inter-band polarization, and the intra-band
polarization, respectively.
Higher-harmonic radiation oscillates much faster than

the laser field. Also, we assume the driving-laser fre-
quency to be much smaller than the band gap divided by
~ so that the material is transparent to the laser. There-
fore, we assume that the laser electric field is quasi-static,
E(t) = E0, and watch the electronic states under this
assumption. The last term in Eq. (1) results in the intra-
band accleration of the electrons: K(t) = k0+

qE
~
t, where

k0 is the initial wave number [Fig. 1(a)]. The electron-
electron interaction works as pure dephasing at the time
scale of tens of femtoseconds [21], so the dynamics of the
electrons with different k0 can be independently calcu-
lated. We take an interaction-representation picture for
k so that k = K(t) changes in time following this intra-
band acceleration, so the last term in Eq. (1) is elim-
inated. The cost we pay is that the Hamiltonian now
depends on time even though we assumed a static elec-
tric field. This temporal dependence is periodic in time,
hence we can employ the Floquet theorem to obtain the
solutions.
We illustrate how to apply the Floquet method us-

ing a one-dimensional two-band model for example, i.e.,
conduction band and valence band (λ = C or V, respec-
tively). Note that this procedure is applicable to any
number of bands. In matrix form, the Hamiltonian is

H(t) =

[

εV(K(t)) −E0µ(K(t))
−E0µ

∗(K(t)) εC(K(t))

]

. (2)

The conduction- and valence-band energies and the
dipole coupling energies are periodic functions of k. Un-
der a static field, this periodicity is imprinted onto tem-
poral periodicity because K(t) = k0 +

qE

~
t is linear to t.

Therefore, the Hamiltonian is also periodic in time, and
can be decomposed into a Fourier series as

H(t) =
∑

n

e−inΩBtH̃n, H̃n ≡

[

ε̃nV −E0µ̃
n

−E0µ̃
n∗ ε̃nC

]

.

(3)
where ΩB = aeE0/~ is the frequency of the periodicity,
which is the Bloch frequency. µ̃n and ε̃nλ are the Fourier
coefficients of µ(K(t)) and ελ(K(t)), respectively.
We can now apply the Floquet theorem to

this system. The problem to find solutions of
the original Schrödinger equation (2) is translated
into solving the following eigenvalue problem [24]:
∑

ν′,n′

(

Hn−n′

νν′ − n~ΩBδνν′δnn
′

)

|φn
′

ν′ 〉 = ǫnν |φ
n
ν 〉. ǫ

n
ν is a

quasi-energy, and the eigenstate |φnν 〉 is a WS state [25].
Here the indices ν and ν′ labels different Floquet quasi-
energy series. Within one series, the quasi-energies are
equidistant : ǫnν − ǫn

′

ν = ~(n−n′)ΩB. The number of the
series is the same as the number of the original electronic
bands. The solutions of the original Schrödinger equa-
tion are constructed from the quasi-energy eigenstates of
the Floquet Hamiltonian:

|Ψ(t)〉 =
∑

ν

∑

n

Cνe
−i

ǫ
n
ν

~
t |φnν 〉 . (4)
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The linear-combination coefficients Cν are determined by
the initial electron states and the prior temporal evolu-
tion of the field, following the Landau-Zener tunnelling
probability [5, 10, 26, 27]
It is interesting to see that the above procedure of

the Floquet method can be mapped into a coordinate-
space picture via a standard tight-binding procedure
[Fig. 1(b)]. Consider atomic Wannier states |φnλ〉 in a
lattice, where n labels the site position and λ is the
band index. ε̃nλ corresponds to the coupling to the n-
th neighbor site. Diagonalization of the Hamiltonian
without field gives the standard band structure. An ex-
ternal electric field provides two additional effects. The
first is the position(x)-dependent potential energy shift,
−qxE. The second is the inter-band mixing between the
n-th neighbors via dipole coupling µ̃n. Diagonalization of
this coordinate-space Hamiltonian gives the same energy
spectrum as the Floquet quasi-energy spectrum.
Figure 1(c) shows the quasi-energy spectra as func-

tion of the quasi-static field amplitude. Parameters are
chosen to simulate a typical wide-band-gap semiconduc-
tor: a band offset ∆ ≡ ε̃0C − ε̃0V of 6 eV, a conduction-
band width 2ε̃1C = 2ε̃−1

C of 3 eV, a valence-band width
2ε̃1V = 2ε̃−1

V of 2 eV, and an intra-atomic dipole moment
µ̃0 of 0.1 |e−|·nm. The other parameters (ε̃nλ for |n| ≥ 2
and µ̃n for |n| ≥ 1) are zero. For the diagonalization, we
introduced a cutoff in n as |n| ≤ 7. Increasing the cutoff
does not change the quasi-energies of the n = 0 states for
ΩB > ∆ (i.e., |E| > ∆/qa) because the mixing between
wave functions having a large difference in n is negligi-
bly small. In the coordinate space picture [Fig. 1(b)],
this corresponds to neglecting the inter-atomic coupling
if they are separated by na, which is larger than the WS
localization length [10].
Next, we calculate the current. The intra-band current

operator is obtained from the electron group velocity as

Jλλ′(t) = e
~

∂ελ(k)
∂k

∣

∣

∣

k=K(t)
δλλ′ . The inter-band current is

given as the temporal derivative of the interband polar-
ization Pλλ′ (t) = µλλ′(K(t)). Both are periodic in time,
and thus can be described using their Floquet Matrix el-
ements. We calculate the expectation value of the total
current for the dressed electronic state in Eq. (4):

d

dt
〈P (t)〉+ 〈J(t)〉 =

∑

ν,ν′

∑

n,n′

C∗
νCν′ei

ǫ
n
ν

−ǫ
n
′

ν′

~
t

×

(

〈φnν |PF |φn
′

ν′ 〉
i(ǫnν − ǫn

′

ν′ )

~
+ 〈φnν | JF |φn

′

ν′ 〉

)

. (5)

Here, the Floquet matrix PF is defined as 〈ψn
λ |PF |ψn′

λ′ 〉 ≡

〈ψλ| P̃
(n−n′) |ψλ′〉, where |ψn

λ〉 ≡ exp(−inΩBt) |ψλ〉 are
the bases in the extended Hilbert space and |ψλ〉 are the
bases of the original equation (2). JF is defined similarly.
See supplementary information for details.
The oscillating total current in Eq. (5) works as

the source of radiation. The difference between quasi-
energies, εnν − εn

′

ν′ , gives the photon energy of the radia-
tion. The radiation yield is determined by the terms in
parenthesis in Eq. (5), i.e., the matrix element of the total
current operator between different quasi-energy states.
Figure 1(d) shows the energy spectra of the current, with
the intensity amplitudes of the current matrix elements
encoded in color. According to the quasi-energy spec-
trum, seemingly infinitely high energy photons can be
emitted because the quasi-energy spreads over infinite
values. However, this is not the case because the current
matrix elements between different quasi-energy eigen-
states steeply drops in logarithmic scale as the quasi-
energy difference increases. The coefficients Cν has a
secondary influence to the radiation power because the
population distribution changes within linear scale, as we
will see later. Note that propagation effects modify the
HHG spectra from the current spectra through absorp-
tion and phase mismatch [18].
In a strong-field limit, i.e., ~ΩB > ∆, the quasi-energies

are approximated as ǫn(±) ≈ n~ΩB±

√

(∆/2)2 + (~ΩR)2+

(ε̃0C + ε̃0V)/2. Here ΩR ≡ Eµ̃0 is the Rabi frequency be-
tween the two Wannier states within a single atomic site,
and the term including ΩR corresponds to Stark shift.
The difference between two quasi-energy states gives the
radiation energy:

ǫn(+) − ǫn−N
(−) ≈ N~ΩB +

√

∆2 + (2~ΩR)2. (6)

When ΩR ≪ ∆, this value converges to NΩB +∆. This
means that the cut-off energy is linear to the field ampli-
tude because a multiple of the Bloch frequency N~ΩB is
included. On top, ∆ remains as an offset, which accounts
for the experimentally obtained offset in the cutoff energy
[3, 4]. Note that in the carrier-wave Rabi flopping regime
(ΩR ≫ ∆), the cutoff is NΩB + 2ΩR.
To show the validity of this picture, we compare it

with numerical results [Fig. 1(e)]. The temporal evolu-
tion of the TDSE is obtained with the Crank-Nikolson
method [28]. The valence band is initially fully occu-
pied, while the conduction band is empty. We calcu-
late the total current density | d

dt
〈P (t)〉 + 〈J(t)〉 |2. The

laser pulse has a central frequency of 200 THz and a
FWHM of the intensity envelope of 30 fs. We changed
the peak electric field in the simulations, while fixing the
waveform. Carrier-envelope-phase variation induces neg-
ligible change in HHG spectra for such relatively long
pulses. In comparison, we integrated the radiation yield
in Fig. 1(d) over the laser waveform to estimate the radia-
tion spectra [Fig. 1(f)]. Quantitative agreement between
the numerical and the semi-analytical results is found.
For example, several cutoff steps in the energy (change
in color) are observed in the two pictures, overlapping
each other. Hence, the semi-analytical results are well
supported by numerical simulations. They deviate when
|E| < ∆/qa, because the quasi-static assumption is only
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FIG. 2: (Color) Prediction of the possible generation of at-
tosecond pulse. The incident laser waveforms having (a) co-
sine and (b) sine wave forms are plotted as the red curves,
while their envelopes (green curves) are identical. The blue
shaded areas show the power of the HHG through high-pass
filters, having cutoff energies at (a) 40 eV and (b) 38 eV.
(c)(d) Numerically obtained HHG spectrograms. The win-
dow function is a gaussian having a FWHM of 0.67 fs, i.e.,
6.2 eV in energy, which broadens the spectrograms. (e)(f)
Spectra of the total current matrix elements as functions of
time. The color indicates the intensity amplitude of the ma-
trix elements. (g)(h) Temporal evolution of the upper-level
population. The shaded areas indicate |~ΩB| > ∆, indicating
the field amplitude exceeds the last anti-crossing in Fig. 1(b).

valid for stronger field values. Note that the computa-
tion cost for the semi-analytical method was three orders
of magnitude smaller than that of the numerical integra-
tion.

So far we have clarified the mechanisms of HHG based
on quasi-static electronic states. This provides us an op-
portunity to predict the possibility of generation of iso-
lated attosecond pulse(s), whose waveforms can be con-
trolled by the carrier-envelope phase (CEP) of the in-
cident laser pulse. Figures 2(a) and (b) show two laser
waveforms having different (0 and π/2) CEPs, which cor-
respond to cosine and sine waveforms, respectively. We
numerically simulate the temporal evolution of the TDSE
under these laser waveforms, and obtain spectrograms of
the currents [Figs. 2(c) and (d)]. These spectrograms
show notable differences: the cosine pulse generates a
single high-energy peak while the sine pulse generates a
double peak. Single or double attosecond pulses can be
separated from the rest of the radiation by introducing

high-pass filters [Figs. 2(a) and (b)].

The quasi-static assumption insightfully accounts for
the main features in the spectrograms when |E| > ∆/qa.
Figures 2 (e) and (f) show the energy and the yield of
the radiation under the quasi-static field approximation,
which well explains the photon energies of the radiation
peaks in Figs. 2(c) and (d). Note that there remains a
considerable radiation at low energies in the spectrogram
after the laser pulse passes. This cannot be treated in
the quasi-static field model because it is applicable when
|E| > ∆/qa.

One limitation of the present approach is that the co-
efficients Cν in Eq. (4) cannot be determined with the
present value of the field alone, because they are deter-
mined by the initial conditions and depend on how the
field evolved. So, it is worth considering how these coef-
ficients evolve in the numerical simulations. The speed
of the change in the field value determines the tunnelling
rate when the field value goes through anti-crossings in
the quasi-energy spectra. For example, the last anti-
crossing in Fig. 1(c) is ∼ 0.5 eV wide (i.e., the one
for the largest field amplitude), which is comparable to
the frequency of the laser field, 0.83 eV/~. Therefore,
when the field value goes across the anti-crossings, elec-
trons experience intermediate transitions between adia-
batic and diabatic ones through Landau-Zener tunnelling
[5, 10, 26, 27]. This is found in Figs. 2 (g) and (h), show-
ing the populations of an upper energy Wannier state.
This temporal evolution of the populations accounts for
the more detailed features in the HHG spectrograms. For
example, the two high-energy pulses in Fig. 2(d) have
different intensities, and this difference reflects the differ-
ence in upper-level population in Fig. 2(h). The evolution
of the upper-state population is important to understand
other strong-field phenomena, such as laser-field induced
currents in dielectrics [5]. The present picture can bridge
the gap between these intriguing phenomena.

In this Letter, we treat a one-dimensional model be-
cause of its universal and heuristic insight. In particular,
Eq. (6) explains why the cutoff energy scales linearly to
the field amplitude with an offset. The present method is
fundamentally applicable to the three-dimensional (3D)
models by means of many-mode Floquet theory [29].
However, a 3D model cannot be equally universal be-
cause there are many crystallographic classes; the direc-
tion of the field with respect to crystallographic lattice is
another important factor [4, 8]. Therefore, the 3D com-
putations should be done for specific crystals and optical
polarizations. These extensions to higher dimensions will
be published else where.

To summarise, the HHG radiation mechanism in solids
is described as radiation from localised WS states in the
strong-field regime, |E| > ∆/qa. The differences of the
quasi-energies of the WS states determine the radiation
energies. The current matrix elements between differ-
ent quasi-energy states determine the radiation yields.
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This mechanism is analogous to the one employed in the
quantum cascade laser, where the mini-bands are formed
in semiconductor superlattices under a static field, and
the radiation frequency corresponds to the energy differ-
ence between mini-bands [30, 31]. In this sense, HHG in
solids can be considered as quantum-cascade emission at
extreme ultraviolet frequencies, where high-energy car-
riers are coherently injected through Landau-Zener tun-
nelling. Highest energy radiation is emitted when the
incident field peaks. This greatly differs from the atomic
case, where the recollision event of the electrons with
highest kinetic energy does not happen at the time when
the laser field peaks.
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