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Materials that realize Kitaev spin models with bond-dependent anisotropic interactions have
long been searched for, as the resulting frustration effects are predicted to stabilize novel forms of
magnetic order or quantum spin liquids. Here we explore the magnetism of γ-Li2IrO3, which has the
topology of a 3D Kitaev lattice of inter-connected Ir honeycombs. Using magnetic resonant x-ray
diffraction we find a complex, yet highly-symmetric incommensurate magnetic structure with non-
coplanar and counter-rotating Ir moments. We propose a minimal Kitaev-Heisenberg Hamiltonian
that naturally accounts for all key features of the observed magnetic structure. Our results provide
strong evidence that γ-Li2IrO3 realizes a spin Hamiltonian with dominant Kitaev interactions.

PACS numbers: 75.25.-j, 75.10.Jm

Magnetic materials with bond-dependent anisotropic
interactions are candidates to display novel forms of mag-
netic order or quantum spin liquid states, as exemplified
by the Kitaev model on the honeycomb lattice [1]. Here
all spins interact via nearest-neighbor Ising exchanges,
but a different Ising axis (x, y, z) applies for the three
different bonds emerging out of each lattice site. This
leads to strong frustration effects that stabilize a novel
gapless quantum spin liquid state with exotic excitations
(Majorana fermions), which is exactly solvable in two
dimensions. It was theoretically proposed [2] that such
exotic Hamiltonians might be realized in magnetic mate-
rials containing edge-sharing cubic IrO6 octahedra. The
magnetic ground state of Ir4+ including the cubic crys-
tal field and spin-orbit coupling is a spin-orbital doublet
with Jeff = 1/2 [3], and super-exchange through the two
90◦ Ir-O-Ir paths is expected to lead to a dominant Ising
interaction for the moment components normal to the
Ir-O2-Ir plane [2]. For a three-fold coordinated IrO6 oc-
tahedron this leads to perpendicular Ising axes for the
three nearest-neighbor bonds, as required for a Kitaev
model. The 2D honeycomb-lattice α-Na2IrO3 [4–8] and
α-Li2IrO3 [9, 10] are being intensively explored as can-
didate Kitaev materials, but as yet no clear evidence for
novel Kitaev physics has been observed.

Generalizations of the Kitaev model to 3D lattices are
also expected to have quantum spin liquid states [11–
13]. The recently-synthesized structural polytypes “hy-
perhoneycomb” β−Li2IrO3 [14] and “stripyhoneycomb”
γ−Li2IrO3 [15], which maintain the local three-fold coor-
dination of edge-sharing IrO6 octahedra, are prime candi-
dates to display 3D Kitaev physics. To test for signatures
of such physics we have performed magnetic resonant
x-ray diffraction (MRXD) measurements [16] on single
crystals of γ-Li2IrO3, scattering at the strong Ir L3 res-
onance [5]. We have determined the complete magnetic
structure for all 16 iridium sites in the unit cell, and

found an unexpectedly complex, yet highly symmetric
magnetic structure comprised of non-coplanar, counter-
rotating iridium magnetic moments located in zig-zag
chains. Remarkably, the magnetic structure exhibits no
net ferromagnetic or antiferromagnetic spin correlations,
and as such one can rule out a model Hamiltonian whose
primary ingredient is the nearest-neighbor Heisenberg in-
teraction. Instead, motivated by the work of Jackeli and
Khaliullin [17], and by arguments based on susceptibility
anisotropy [13, 15], we present a minimal spin Hamilto-
nian with dominant Kitaev interactions that naturally
reproduces all key features of the observed magnetic or-
der. In particular, we point out that counter-rotation of
moments on the zig-zag chains are naturally stabilized
by Kitaev interactions. Our results therefore provide
strong evidence that dominant Kitaev couplings govern
the magnetism of γ-Li2IrO3.

The MRXD experiments were performed using the I16
beamline at Diamond (see [18] for details). Systematic
searches along high-symmetry directions in reciprocal
space revealed that at low temperatures new magnetic
Bragg peaks appeared at satellite positions of reciprocal
lattice points with an incommensurate propagation vec-
tor q = (0.57(1), 0, 0) [19]. The satellite peaks were found
to be as sharp as structural peaks in all three reciprocal
space directions, as illustrated for the (0, 0, 16)+q reflec-
tion in Fig. 1a); indicating coherent, 3D magnetic order-
ing. The peaks disappeared upon heating [Fig. 1(a), open
circles] and the temperature-dependence of the intensity
had a typical order parameter behavior [see Fig. 1(b)].
The absolute temperature values have been corrected for
beam-heating effects through a calibration against spe-
cific heat measurements on the same sample, shown in
Fig. 1(b) inset, which give TN = 39.5 K.

The magnetic origin of the satellite reflections was fur-
ther confirmed by analyzing the polarization of the scat-
tered beam. Fig. 1(c) shows that the peak at (0, 0, 16)+q
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FIG. 1: (color online) Magnetic Bragg peak at (0, 0, 16)+q.
(a) Scans along orthogonal directions in reciprocal space
(filled/open symbols at base temperature/above TN). Dashed
lines are fits to a Gaussian shape. (b) Temperature-
dependence of the integrated magnetic peak intensity (solid
line is guide to the eye, temperature values are corrected for
beam heating effects, see text). Inset: specific heat data show-
ing an anomaly at the onset of magnetic order. (c) Scans
with a polarizer in the scattered beam: the magnetic signal
is present only in the σ-π′ channel (filled circles) and disap-
pears in the σ-σ′ (open circles) dominated by charge scatter-
ing (intensity scaled by 1/10). (d) Energy scan through the
magnetic peak (blue squares) and a structural Bragg peak
(0, 0, 16) (dotted line, scaled by 1/104), as well as the fluores-
cence scan (solid line).

appeared only in the σ-π′ channel (filled circles), and is
absent in the σ-σ′ channel (open circles), as expected
for resonant diffraction that is of pure magnetic origin
[16]. An energy scan performed whilst centered on the
magnetic peak [Fig. 1(d)] showed a large resonant en-
hancement of the scattered intensity, again as expected
for MRXD. The energy dependence is in stark contrast
to that characteristic of a nearby structural peak (dot-
ted line). Furthermore, the obtained resonance energy
is similar to values found in other iridates [5, 20] and

FIG. 2: (color online) (a) Scan along the (h, 0, 24) direction
observing structural peaks at h = 0, 4 (intensity scaled by
1/104 for clarity), a multiple-scattering signal centered at h =
2, and magnetic peaks at h = 0 + q, 2 ± q, 4 − q. Solid red
line is the calculated magnetic scattering intensity [21] for
the magnetic structure model depicted in Fig. 4. (b) (h0l)
reciprocal plane with filled circles, diamonds and red crosses
indicating positions of structural peaks, measured magnetic
peaks and the absence of peaks, respectively. Lattice points
are also labelled by the magnetic basis vectors that have finite
structure factor for magnetic peaks at satellite ±q positions.

agrees well with the edge of the measured fluorescence
signal from the sample (solid line in Fig. 1(d)).

In total over 30 magnetic Bragg peaks were observed,
and those measured in the (h0l)-plane are labelled in
Fig. 2b). A representative scan along the (h, 0, 24) direc-
tion is plotted in Fig. 2a), which shows strong structural
Bragg peaks centered at h = 0, 4, a multiple scattering
signal centered at h = 2, and four magnetic Bragg peaks
symmetrically displaced away from the above reflections.
The scan illustrates the highly symmetric nature of the
magnetic peak intensities and that q is distinctly differ-
ent from the commensurate wavevector ( 1

200).

The magnetic iridium ions are located on two inequiva-
lent sublattices in the orthorhombic unit cell, referred to
as Ir and Ir′, respectively (light and dark balls in Fig. 4).
Each sublattice contains four sites in the primitive cell
labelled 1 to 4 and 1′ to 4′, respectively. For a propaga-
tion vector q = (q, 0, 0) symmetry analysis [22] gives four
types of magnetic basis vectors for each of the two sublat-
tices: ++++(F ), ++−−(C), +−−+(A) and +−+−(G)
where the ± signs denote a symmetry-imposed relation
between the magnetic Fourier components at the sites
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1-4 and 1′-4′.

Each of the four types of basis vectors has its own
selection rules for a non-zero structure factor, so their
presence can be directly confirmed from the observation
of magnetic reflections at certain positions, and in some
cases one can also identify the phase relation between the
two sublattices. For example, all magnetic peaks along
the (h, 0, 24) line in Fig. 2a) can be uniquely assigned
to scattering from F -type basis vectors. Satellites at
h = 0+ q and 4− q arise from components that are equal
in magnitude and in phase on the two sublattices, (F ,F )
in short-hand notation, whereas the satellites at h = 2±q
originate from scattering by components equal in magni-
tude, but with opposite sign on the two sublattices, i.e.
(F ,−F ) (see [18] for details). The overall selection rules
for magnetic scattering are illustrated in Fig. 2b). We
have ruled out the presence of both C and G basis vectors
as systematic searches (at 4 different azimuth angles) at
the satellite positions (0, 0, 23)+q and (2, 0, 23)−q (red
crosses) gave no sign of a magnetic signal. Furthermore,
the observation of an AG magnetic peak at (1, 1, 21)−q,
G being ruled out, confirms the presence of an A basis
vector (azimuth scan in Fig. 3(a)).

The polarization dependence of the MRXD intensity
allows a direct identification of the orientation of the
magnetic moments. For a σ-polarized incident beam only
the projection of the magnetic moments along the scat-
tered beam direction, k̂′, contribute to the diffraction
intensity [16]. By rotating the sample around the scat-
tering vector Q = k′ − k by the azimuth angle, Ψ, [see
diagram in Fig.3a) inset] the projection of the magnetic
moments onto k̂′ changes, giving a clear signature of
the moment direction. We have measured the azimuth
dependence for three magnetic peaks close to the sam-
ple surface normal, such that the Ψ rotation is almost
around (001). The origin, Ψ = 0, is defined as when
the (010) direction is in the scattering plane and point-
ing away from the source. Fig. 3a) shows the azimuth
scan for a pure-A magnetic Bragg peak. The intensity
drops to zero at Ψ = 0 and 180◦ and has maxima at
±90◦, uniquely identifying that scattering comes from
magnetic moment components along x (here x, y, z are
along the orthorhombic a, b, c axes and scattering from
y- and z-moment components, blue and green lines, re-
spectively, have been calculated for comparison); hence
identifying basis vector components in the combination
(A,±A)x, where the two sublattices are assumed to have
equal magnitude moments. Similarly, the azimuth of the
pure-F peak in Fig. 3b) originates from y-components an-
tiparallel on the two sublattices, identifying the basis vec-
tor (F ,−F )y. Fig. 3c) shows the azimuthal dependence
for a mixed FA peak, which uniquely identifies it as com-
ing from basis vector components π/2 out-of-phase in the
combination i(A,−A)x, (F ,F )z. We note that this com-
bination of relative phases between the x and z compo-
nents on all the iridium sites is unique, where other com-

FIG. 3: (color online) Integrated intensity as a function of
azimuth for three magnetic Bragg peaks, a) pure-Ax, b) pure-
Fy and c) mixed-FzAx. Top diagram illustrates the scatter-
ing geometry. Data points (filled circles) are integrated peak
intensities from rocking curve scans corrected for absorption
and Lorentz factor. Thick (red) lines show fits that include all
contributions to the MRXD structure factor [16, 21] from the
magnetic structure model i(A,−A)x,−i(F ,−F )y, (F ,F )z,
depicted in Fig. 4. Blue/green curves in a,c) illustrate that
other phase combinations of basis vectors are ruled out.

binations can be qualitatively ruled out (see blue/green
curves in the same figure). The observed phase combi-
nation describes counter-rotating moments between con-
secutive sites along c (curly arrows in Fig. 4), which form
counter-rotating zig-zag chains along a.

To determine the relative magnitudes of the magnetic
moment components we performed a simultaneous fit
to the magnetic scattering intensities in the three az-
imuth scans in Fig. 3 with four free parameters: the
magnitudes of the moment amplitudes Mx and My rel-
ative to Mz, an overall intensity scale factor for the
(1, 1, 21)−q and (2, 0, 24)−q peaks and a separate in-
tensity scale factor for the (0, 0, 16)+q peak (which was
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FIG. 4: (color online) Projection of the magnetic structure
on the (a, c) plane showing 3 unit cells along the horizontal
propagation direction a. Light and dark blue arrows show
the moments on the Ir and Ir′ sublattices, with sites 1 − 4
and 1′ − 4′, respectively. Curly arrows on the left side il-
lustrate counter-rotating magnetic order between consecutive
sites along c. In unit cell 2 light (−φ) and dark (+φ) shaded el-
liptical envelopes emphasize the confinement of the moments
to alternate planes obtained from the (ac) plane by a ro-
tation by ∓φ around c. In unit cell 3 color of bonds indi-
cates the anisotropy axis of the Kitaev exchanges in (1), with
η = x, y, z for black/green/red bonds, where x̂ = (â + ĉ)/

√
2,

ŷ = (â− ĉ)/
√

2 and ẑ = b̂ [15]).

measured on the same sample, but in a different exper-
iment). The fit is shown by red solid lines in Fig. 3a-
c), and gave values for the moment magnitude ratios
Mx : My : Mz = 0.65(4) : 0.58(1) : 1. We note that
this also quantitatively reproduces the observed ratio of
the magnetic peak intensities in Fig. 2a) (red line).

Imposing the constraint of near-constant magnitude
moment at every site requires the phase offset between
the x and y components to be π or 0, giving the basis
vector combination i(A,−A)x, i(−1)m(F ,−F )y, (F ,F )z,
with m = 1 or 2. Both give similar structures and we plot
in Fig. 4 the case m = 1. The moments are confined to
rotate in one of two planes, obtained from the (ac) plane
by rotation around the c-axis by an angle ±φ, with φ =
tan−1My

Mx
= 42(2)◦. The pattern is such that neighboring

iridium zig-zag chains have alternate orientations of the
moment rotation plane as indicated by the light and dark
shaded envelopes in Fig. 4. The m = 2 case simply gives
the opposite alternation of the rotation planes.

A key feature of the magnetic structure is the counter-
rotation of neighboring moments. On two such sites,
say 1 and 1′, the spins projected to the ac-plane are
S1,1′(r) = ĉ〈Sc〉 cos q · r ± â〈Sa〉 sin q · r. We now ro-
tate from the crystallographic a, b, c-axes to the Kitaev
axes denoted by sans serif symbols x, y, z (see Fig. 4 cap-

tion) and consider the correlation between the Sx spin
components Sx

1S
x
1′ across an x-type bond, or Sy

1S
y
1′ across

a y-type bond. The net averaged correlation is finite,
〈Sx

1S
x
1′〉x = 〈Sy

1S
y
1′〉y = 〈Sa〉〈Sc〉 12 sin πq

2 . We see that
along each x-type bond the spins are aligned when they
point along x, and anti-aligned when they point along y,
and similarly for y-type bonds. Thus Kitaev interactions
can stabilize the counter-rotating moments with a prop-
agation vector q along a. We therefore construct the
following Kitaev-Heisenberg Hamiltonian as a minimal
model

H =
∑

c−bonds

[
KcS

ηij
i S

ηij
j + JcSi · Sj + IccS

c
iS

c
j

]
+

∑
d−bonds

[
KdS

ηij
i S

ηij
j + JdSi · Sj

]
+

∑
2nd 〈〈ij〉〉

J2Si · Sj (1)

where interactions along the vertical (along c) bonds are
denoted by the subscript c and interactions along the zig-
zag (diagonal) bonds are denoted by the subscript d. Kc

and Kd are the Kitaev interactions along c-bonds (of type
ηij = z) and d-bonds (of type ηij = x or y), respectively.
To prevent (0, 0, qc) instabilities we have introduced an
Ising coupling Icc of the Sc spin components, and finally
a Heisenberg coupling J2 between second nearest neigh-
bors. We take the following values for the parameters
(in units of meV): Kc = −15,Kd = −12, Jc = 5, Jd =
2.5, Icc = −4.5, J2 = −0.9 [18], where the overall scale
was set such as to have the calculated ordering transi-
tion temperature agree with the experimental value.

The Hamiltonian was analyzed in Fourier space us-
ing the Luttinger-Tisza approximation [18]. This gave
the lowest-energy mode identical to the (Sa,Sc) copla-
nar projection of the magnetic structure in Fig. 4 with
〈Sc〉 > 〈Sa〉. To obtain fixed-length spins requires mixing
with another mode, and the lowest energy mode avail-
able at the same wavevector has collinear order of the
Sb components with a pattern such that the mixed mode
exactly reproduce the observed non-coplanar structure.
Furthermore, the Sb components are co-aligned along all
the c-axis bonds, and hence stabilized by the large FM
Kc Kitaev exchange. The mixing amplitude, related to
the tilt angle φ, is fixed for unit length spins, but changes
continuously with the Hamiltonian parameters. Decreas-
ing the strength of the Kitaev interactions prevents the
ground state from producing unit-length spins through
this mixing mechanism, and importantly, we find that the
non-coplanar tilt angle observed in γ-Li2IrO3 requires rel-
atively large Kitaev exchanges within the minimal model.

To summarize, through MRXD measurements on γ-
Li2IrO3 single crystals we have observed an incommen-
surate, non-coplanar magnetic structure with counter-
rotating moments. A Kitaev-Heisenberg Hamiltonian
can fully explain the observed complex magnetic struc-
ture, providing strong evidence that γ-Li2IrO3 is an ex-
perimental realization of 3D Kitaev physics in the solid
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state.
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