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Wang–Landau sampling, and the associated class of flat histogram simulation methods have
been remarkably helpful for calculations of the free energy in a wide variety of physical systems.
Practically, convergence of these calculations to a target free energy surface is hampered by reliance
on parameters which are unknown a priori. Here, we derive and implement a method built upon
orthogonal functions which is fast, parameter-free, and (importantly) geometrically robust. The
method is shown to be highly effective in achieving convergence. An important feature of this
method is its ability to attain arbitrary levels of description for the free energy. It is thus ideally
suited to in silico measurement of elastic moduli and other material properties related to free energy
perturbations. We demonstrate the utility of such applications by applying our method to calculate
the Frank elastic constants of the Lebwohl–Lasher model of liquid crystals.

Free energies provide essential information about the
properties and structure of materials, including self-
assembled colloidal clusters [1], crystals [2], and folded
protein states [3]. Calculations of the free energy are
challenging, particularly when the associated landscape
exhibits large, rapidly varying features [4]. Many meth-
ods have been proposed to calculate free energies in sim-
ulations of many-body systems. Examples include - but
are not limited to - thermodynamic integration [5, 6],
adaptive bias potentials [7–12], parallel tempering cou-
pled to histogram reweighting [13–16], density-of-states
sampling [17–19], nonequilibrium steered dynamics ex-
ploiting Jarzynski’s identity [20, 21], expanded ensem-
ble [22–24], and flux-based methods [25–27]. Expanded
ensemble calculations, which extract free energies by en-
forcing uniform sampling on a small set of thermody-
namic quantities, are of particular interest for their effi-
ciency and wide application [24]. These methods may
naturally measure the free energetic cost of perturba-
tions [28], codified by material properties defining re-
sponse to (e.g.) thermal stress, tension, torsion or shear
by probing the local free energy topography along a de-
formation coordinate ξ,

F (ξ) = F0 + F1ξ +
1

2
F2ξ

2 + ... . (1)

Such polynomial (Taylor) expansions are ubiquitous in
physical models. Here, we demonstrate that such ex-
pansions may be exploited by targeted sampling along
a set of orthogonal polynomials Pi(ξ), to determine the
material properties Fi. We denote this method of free
energy calculation basis function sampling (BFS). Fur-
ther, we show that adaptive biasing driven by a trun-
cated set of orthogonal basis functions is broadly applica-
ble, involves no ad hoc parameters, and naturally satisfies
boundary conditions on the domain of interest. Impor-
tantly, we demonstrate that such methods greatly reduce
errors in free energy calculations relative to the existing
approaches based on Wang–Landau sampling.

Until recently, free energy calculations in molecular
simulations required a connecting pathway between two
states; through a combination of umbrella sampling (to
resolve rare states) [29], histogram reweighting [13, 14]
and thermodynamic integration techniques [29], the
change in free energy during transformation between a
pair of macrostates (denoted ξ1 and ξ2) could be ob-
tained. This computation-intensive process has been
supplemented over the past two decades with “flat his-
togram” or “density-of-states” methods, which directly
determination of the density of states, or partition
function, from a single simulation in computationally
tractable fashion. One of these, Wang–Landau sampling
(WLS) [17], calculates the density of states within energy
(U) space by proposing random changes to the state, and
biasing against visited energy levels. In contrast to the
normal Metropolis criterion for Monte Carlo (MC) simu-
lations, WLS performed in the multicanonical ensemble
has an acceptance rate which is determined by the ratio
of history dependent weight factors,

p(1 → 2) = min [W (ξ1)/W (ξ2), 1] , (2)

where states 1 and 2 are microstates with labels ξ1 =
U(1) and ξ2 = U(2) respectively. Upon satisfying de-
tailed balance [30], all states become equally visited. The
biasing factor W (U) is thus an on-the-fly estimator for
Ω(U), the density of states.
Regarding the energy U as a thermodynamic poten-

tial, analogous algorithms for other ensembles result via
Legendre transformation [31]. The Helmholtz free en-
ergy F = U − TS, will be referenced in what follows,
though our discussion applies generically. The relative
probability of two states in the multicanonical ensemble,
Ω(U(1))/Ω(U(2)) = e∆S12 is replaced by the ratio of their
Boltzmann factors, P (ξ1)/P (ξ2) = e−β(F (ξ1)−F (ξ2)) [30].
The adaptive weight factors W (ξi) normalize subsets of
the Boltzmann distribution so that macrostates are be
equally visited. The resulting acceptance and conver-
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gence criteria for microstates i of macrostates ξi are thus

p(1 → 2) = min

[

W (ξ1)

W (ξ2)
e−β(U(2)−U(1)), 1

]

(3)

e−βF (ξ1)

W (ξ1)
=

e−βF (ξ2)

W (ξ2)
(4)

Defining Φ = kBT log(W ), Eq. 4 implies constant
F +Φ—the ratio of weight factors which previously cod-
ified entropy now codifies Helmholtz free energy. Updat-
ing W in this fashion is the basis for Expanded Ensem-
ble Density of States (ExEDOS) [19, 30], joint density
of states [32] and metadynamics [23, 24, 33] approaches.
In them, one must identify a set of collective variables
(CVs) ~ξ to characterize the system. The common choice
of U results in W (U) = Ω(U)e−βU , equivalent to WLS.
Many order parameters can prove useful, such as pro-
tein geometry, radius of gyration, nematic ordering, and
coordination numbers.
A key idea here is the duality of the weighting fac-

tor, serving both as a measure of relative probability and

a biasing potential Φ, computed on-the-fly. The second
perspective is useful, as it allows connection of Φ(~ξ) to
the topography of the free energy surface (FES). In each
visit to a particular macrostate, one deposits a ’sandhill’
of bias. As the FES begins to fill, diffusion across free
energy space becomes uninhibited, and the histogram
becomes flat. Upon convergence, the potential Φ ob-
tained in this manner is, up to a constant, −F . A set
of distinct but similar methods, including Adaptive Bias
Force [34], Adaptive Bias Potential [10], and Adaptive
Umbrella Sampling [11] use the same principle to create
a flat histogram, and thus obtain the FES. In general,
these methods are not parameter free. The biasing po-
tential approaches the true FES at a rate determined by
diffusion, and by a set of parameters bespoke to each re-
alization, such as the shape and amplitude of elemental
biases [33, 35, 36]. The problems of each may be out-
lined by considering their role in continuous versions of
WLS [32]. Including metadynamics, we collectively refer
to these as CWLS.
CWLS methods are based on passing the discrete

states of Eq. 2–4 to a continuum using Gaussian or sim-
ilar biases; e.g. elemental biases g(~ξ, ~si) of the form

g(~ξ, ~si) = Wie
−

[~ξ−~si]
2

2σ2

i . (5)

In this equation, the history of the system is indexed by
i, with Wi the biasing weight, ~si the order parameter
of configuraiton i, and σi the Gaussian width. The dis-
tinction between historical order parameters ~si and those
on which we obtain the free energy ~ξ is a useful one.
Functions g(~ξ, ~si) may be understood as an attempt to
faithfully replicate an exact representation for the biasing
potential on the overdetermined basis of δ-functions [30].
The smearing is beneficial, as it renders the resulting
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FIG. 1. Continuous methods for flat-histogram sampling uti-
lize Gaussian biases (a) as a continuum approximant to the
Dirac delta function. Plots are labeled (µ, σ, h) according to
their center, width, and height. Near a wall, the finite width of
a Gaussian leads a system to under-bias due to tail truncation.
Pileup of these peaks leads to unphysical trapping and over-
sampling. (b) Projection onto orthogonal special functions
[such as the Legendre polynomials Ln(ξ)] alleviates these is-
sues. (c) Proof of concept for BFS within a one-dimensional
double Gaussian well. The estimated free energy is projected
onto a 25th-order Legendre polynomial expansion. Over 100
MC Sweeps, the polynomial bias drives exploration of phase
space and self-refines until the histogram is flat and the bias
and free energy have converged. The black curve denotes the
exact underlying free energy, while red and blue curves are
the on-the-fly free energy estimate and negative of the bias,
respectively. A movie of the convergence is contained in the
SM [30]

bias continuous and differentiable (though, for a counter-
point, see the Adaptive Bias Force method [34], which
computes these forces directly from the underlying his-
togram). Problematically [cf. Fig 1(a)], this smearing is
not always commensurate with domain boundaries. A va-
riety of ad hoc methods have been created to remedy this
problem, but no comprehensive solution exists [35, 37].

The discrete method (e.g., ExEDOS) contains, in ad-
dition to the time interval over which flatness is de-
termined, a second input parameter that helps deter-
mine convergence—the bias deposition rate. CWLS in-
troduces another, the Gaussian width σ. The desire
for a parameter-free, accurate boundary method inspires
our choice to replace the δ approximation (cf. Eq. 10
of SM [30]) with a local histogram approximating the
partition function Z(ξ), which is then projected onto a
truncated set of orthogonal basis functions [cf. Fig 1(b)]
able to represent any function on the CV domain Ξ to
arbitrary accuracy. The result (BFS) is a parameter-free,
robust method that enables direct measurement of mate-
rial constants via the free-energetic cost of perturbation.
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Many examples of normalized orthogonal special
functions exist, including Fourier series, Bessel Func-
tions, Chebyshev Polynomials, and Hermite Polynomials.
These are sets of functions {fi}, defined on a domain Ξ

relative to a kernel or weight function w(~ξ), such that

∫

Ξ

fi(~ξ)fj(~ξ)w(~ξ)d~ξ = δijcj , (6)

with cj a normalization constant. This property means
that any function φ defined on the domain Ξ may be
represented as an expansion

φ(~ξ) = Σiαifi(~ξ) , (7)

αi =
1

ci

∫

Ξ

φ(~ξ)fi(~ξ)w(~ξ)d~ξ . (8)

When the sum over i is truncated at a maximum N ,
the result is an approximation to the overall function.
We will use these properties to construct an estimate
Φ to the negative of the Helmholtz free energy F . In
what follows, we work along a single CV ξ, and utilize
the Legendre polynomials Li. These have the attractive
feature that w(ξ) = 1, and are defined on the interval
[−1, 1].
Simulations proceed in stages (sweeps), where the bias

applied within sweep i is denoted by Φi. We start with
Φ0 = 0 so that simulations proceed according to the un-
biased Metropolis criterion. Each time a microstate j is
visited, the order parameter sj = ξ(~xj) is calculated, and
recorded in a histogram Hi(ξ). This proceeds for Nstep,i

MC steps, after which the histogram is converted to an
unbiased estimator for the partition function

H̃i(ξ) = Hi(ξ)e
βΦi(ξ) . (9)

This quantity may be directly converted into a bias
through Φi+1 = −βFi = log(H̃i). However, this is not
very useful if the current bias does not permit sampling
on the full domain Ξ. Often, it is not known a priori if
the system state will diffuse over the entire domain, and
Nstep,i may be adjusted after each sweep [see Supplemen-
tary Material (SM) [30]]. Historical information is then
accrued in the partition function estimate:

Zi(ξ) = Σj≤iW (tj)H̃j(ξ) . (10)

The weight function W (tj) determines how sampling his-
tory enters the average. Our simulations primarily uti-
lize the prescription W (tj) = Nstep,j , though this may be
adjusted further to bias the estimates toward recent in-
formation and enhance convergence. The bias potential
−βFi(ξ) = log(Zi(ξ)) is then projected onto a truncated
basis,

βΦi+1(ξ) = ΣN
j αi

jLj(ξ), (11)

αi
j =

2

2i+ 1

∫ 1

−1

log(Zi(ξ))Lj(ξ)dξ . (12)

The process is repeated until the free energy has con-
verged, as determined by evolution of the coefficients αi

j .
This process is closely related to those obtaining a flat
histogram via fitting parameters, as in Refs. [7, 11], with
the distinction that projection to orthogonal functions
implicitly defines the best approximation to the FES at
order N , and may be adapted on-the-fly with minimal
numerical overhead.

This algorithm naturally contains two parameters af-
fecting convergence. One is the length of the sampling
interval, while the other is the number of basis functions
onto which the free energy is projected. These affect only
the rate of convergence, and not the accuracy of the con-
verged free energy, in contrast to the Wi and σi parame-
ters of CWLS, which set the roughness of final free energy
estimates and must be adequately tempered [33, 38] to
remove such effects. The first parameter plagues all flat
histogram methods; sampling is determined by the rate
of diffusion in the system, and one cannot in general tell
if a system is stuck in a free energy basin, or is merely
diffusing extremely slowly. The second input parameter
is just a convenient choice. The number of coefficients
may be adjusted during a given simulation to enhance
sampling. Thus, we have constructed a flat-histogram
method which is free of ad hoc parameters. Importantly,
the resulting bias function is smooth and may be easily
applied in molecular dynamics simulation.

A proof-of-concept using a double-welled Gaussian po-
tential is shown in Fig 1(c). Details of this simulation
are given in the SM [30]. Within 100 iterations, the dif-
ferences between the applied bias, estimated free energy
− log(Zi(ξ)), and known free energy are negligible. Once
sampling is sufficient to cover the domain of ξ, conver-
gence proceeds rapidly. Importantly, the difference be-
tween the free energy estimate Fi(ξ) and the bias po-
tential −Φ(ξ) is dominated by contributions from the
(N+1)th order polynomial [30], but is otherwise flat. Di-
rect comparison using this example shows that while ini-
tial convergence is facilitated by ExEDOS sampling, the
Basis Function method eventually overtakes ExEDOS in
accuracy; moreover, it does so without the need to tweak
and optimize biasing parameters before and during the
calculation [30].

Two additional examples are explored in Figure 2,
which compares the efficacy of the ExEDOS and BFS
methods. Panel (a) plots the PMF (including entropic
effects) between two Lennard-Jones particles versus the
analytical result [30]. With the chosen parameters, each
converges within eight sweeps. For ExEDOS, this may
be tuned by clever adjustment of the initial bias and
sampling interval using a priori knowledge of the FES;
for BFS, this is unnecessary. Moving up in complexity,
we examine the phase behavior of the Lebwohl–Lasher
(LL) liquid crystal model model [30]. Though density
of states simulations have been performed on this sys-
tem [39], an analytical solution for the density of states
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FIG. 2. (a) Potential of mean force between two Lennard-
Jones particles in ExEDOS and BFS methods averaged over
10 independent runs. Here, indivdual ExEDOS sweeps are
10× longer than BFS sweeps [30]. Each simulation converges
to the analytical result within 10 sweeps. Data are offset
by 5 energy units for clarity, with solid black lines showing
the agreement between the analytical potential and simula-
tion results. While ExEDOS methods promote more initial
exploration, the standard deviation σF∗ plotted in panel (b)
demonstrates quick convergence for BFS relative to ExEDOS.
(c,d) Comparisons of free energy (plotted using the bias po-
tential V ∗) for ExEDOS and BFS simulations of a 10×10×10
LL model, run for equal CPU time with parameters given in
the SM [30]. ExEDOS is seen again to promote initial sam-
pling, but features large fluctuations throughout the free en-
ergy surface, defined by F ∗

i −F ∗

i−1, in contrast to BFS which
smoothly converges away from the ≈ 150kBT wall at the
boundary of S. Differences in both the final bias −V ∗

final and
estimated free energy −T ∗ log(Zfinal) away from the bound-
ary are plotted.

is not available. Fig. 2(b,c) demonstrate that both ExE-
DOS and BFS methods converge to the underlying free
energy F (S). Similar to the previous examples, ExE-
DOS results in faster initial sampling relative to BFS,
though BFS attains much higher accuracy away from the
≈ 150kBT barrier at high nematic order parameter S;
this holds for each direct comparison we have performed
(cf. Section II of SM [30]). By contrast, BFS converges
over most of the region of interest quickly, and spends
later times filling in rare states. This presents BFS as a
fast, robust method for estimating free energy surfaces.
Importantly, by managing the regions of interest, using
multiple walkers [40, 41], and combining statistics using
(e.g.) WHAM [13, 14], one may quickly converge the
FES of larger domains that prohibit fast diffusion.

Finally, we highlight a benefit unique to BFS. The or-
thogonal expansion allows truncation at arbitrary order
to study the effects of perturbations on the free energy of
a system (Eq. 1), and thus determine material constants.
In Fig 4(a–c), we show three deformations correspond-
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FIG. 3. Liquid crystal material constants simulations by BFS
for the Lebwohl–Lasher model on an L = 32 cubic lattice. (a)
To sample ξ effectively, it is necessary to properly equilibrate
the system; here we show the relaxation of this model [30] as a
function of time, measured in Monte Carlo steps (MCS). Sym-
bols correspond to a typical simulation, with colored lines the
bulk value from Ref [42]. (b) Measurements of the dimension-
less elastic constant K∗ [30] agree with the results of Ref. [42]
(CA). (c) A sequence of free energy surfaces for T ∗ = 0.90
shows how convergence is approached, through the gradual
application of bias permitting sampling of unfavorable states
near the edge of the interval. Multiple-walker BFS [30] is
utilized to overcome slow diffusion in the deformation coordi-
nate. Upper curves are the measured free energy, while lower
curves denote the applied bias. The curves have been offset
for clarity, with the dashed black lines corresponding to the
elastic constant of Ref. [42].

ing to bend, twist, and splay, whose elastic coefficients
are k33, k22, and k11, respectively. Obtaining these con-
stants by traditional techniques is notoriously challeng-
ing [28, 42]. Utilizing the fundamental bend, twist and
splay modes (cf. Fig. 4) [43], we may excite a single
deformation using expressions outlined in the SM [30].

The details of the LL model set the values of kii equal
to a constant, K (non-dimensionalized as K∗ [30]). Uti-
lizing a recently devised method for generating funda-
mental bend, twist, and splay elastic perturbations in

silico [28], we define an order parameter ξ corresponding
to bend, splay, or twist. The resulting free energy pro-
file is F ∗(ξ) = V ∗K∗ξ2/2, with V ∗ the reduced system
volume, which is equal to the number of spins. An ex-
pansion (Eq. 12) truncated above L2 is used to extract
elastic coefficients. Our simulations are summarized in
Figure 3. After a significant period of equilibration [cf.
Fig. 3(a)] we proceed with the BFS algorithm. A typical
path to convergence is depicted in Fig. 3(c). The re-
sulting coefficients, plotted in Fig. 3(b) match identically
with previous investigations based on long-wavelength di-
rector fluctuations [42].
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FIG. 4. The extended Lebwohl–Lasher model of Ref. [44]
splits the elastic constants of bend, twist and splay deforma-
tions (diagrams at left). The elastic ratios of these coeffi-
cients (determined by BFS) for a model representing para-
azoxyanisole (PAA) are given in the plot at right, with the
expected ratios recovered as temperature is quenched toward
zero [30].

Expanding on this result, in Fig. 4 we show that our
method also captures the elastic ratios associated with
generalized LL models; the model considered here was de-
rived to describe para-azoxyanisole (PAA) in the limit of
zero temperature [30, 44]. Our simulations clearly obtain
the correct elastic anisotropy at low T ∗, with logarithmic
growth in both ratios approaching the isotropic–nematic
transition. This type of measurement opens new possibil-
ities for in silico determination of compressional, shear,
and torsional elastic moduli of solids, along with liquid
crystal deformations.
In conclusion, we have introduced a parameter-free flat

histogram method for free energy calculations. Coupling
this method to currently available umbrella sampling and
parallel replica exchange techniques allows one to obtain
arbitrary free energy surfaces from a set of basis function
simulations on defined intervals. This method is geomet-
rically robust, and permits the direct measurement of
material constants defining the systemic response to free
energy perturbations.
We wish to thank S. Singh, M. McGovern and T. F.

Roberts for helpful discussions. We gratefully acknowl-
edge computational resources accessible through the Uni-
versity of Chicago Midway cluster, and the Blues cluster
operated by the Laboratory Computing Resource Cen-
ter (LCRC) at Argonne National Laboratory. The algo-
rithm development presented in this work is supported by
the U.S. Department of Energy, Basic Energy Sciences.
The calculation of elastic constants of liquid crystals is
supported by the University of Wisconsin Materials Re-
search Science and Engineering Center (UW-MRSEC)
under National Science Foundation Grant No. DMR-
1121288.



6

∗ Current Address: Department of Chemical and
Biomolecular Engineering, University of Notre Dame,
Notre Dame, Indiana 46556

[1] G. Meng, N. Arkus, M. P. Brenner, and V. N. Manoha-
ran, Science 327, 560 (2010).

[2] A. D. Bruce, A. N. Jackson, G. J. Ackland, and N. B.
Wilding, Phys. Rev. E 61, 906 (2000).

[3] A. Barducci, R. Chelli, P. Procacci, V. Schet-
tino, F. L. Gervasio, and M. Parrinello,
J. Am. Chem. Soc. 128, 2705 (2006).

[4] J. N. Onuchic, Z. Luthey-Schulten, and P. G. Wolynes,
Ann. Rev. Phys. Chem. 48, 545 (1997).

[5] E. Carter, G. Ciccotti, J. T. Hynes, and R. Kapral,
Chem. Phys. Lett. 156, 472 (1989).

[6] M. Sprik and G. Ciccotti,
J. Chem. Phys. 109, 7737 (1998).

[7] B. A. Berg and T. Neuhaus, Physics Letters B 267,
249 (1991); Phys. Rev. Lett. 68, 9 (1992); B. A. Berg,
Int. J. Mod. Phys. C 03, 1083 (1992).

[8] A. P. Lyubartsev, A. A. Martsinovski, S. V.
Shevkunov, and P. N. Vorontsov-Velyaminov,
J. Chem. Phys. 96, 1776 (1992).

[9] T. Huber, A. E. Torda, and W. F. van Gunsteren,
J. Comput. Aided Mol. Des. 8, 695 (1994).

[10] B. M. Dickson, F. Legoll, T. Lelièvre, G. Stoltz, and
P. Fleurat-Lessard, J. Phys. Chem. B 114, 5823 (2010).

[11] C. Bartels and M. Karplus,
J. Comp. Chem. 18, 1450 (1997).
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