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We present variational Monte Carlo calculations of the neutron matter equation of state using
chiral nuclear forces. The ground-state wavefunction of neutron matter, containing non-perturbative
many-body correlations, is obtained from auxiliary-field quantum Monte Carlo simulations of up to
about 340 neutrons interacting on a 103 discretized lattice. The evolution Hamiltonian is chosen to
be attractive and spin-independent in order to avoid the fermion sign problem and is constructed
to best reproduce broad features of the chiral nuclear force. This is facilitated by choosing a lattice
spacing of 1.5 fm, corresponding to a momentum-space cutoff of Λ = 414 MeV/c, a resolution scale at
which strongly repulsive features of nuclear two-body forces are suppressed. Differences between the
evolution potential and the full chiral nuclear interaction (Entem and Machleidt Λ = 414 MeV) are
then treated perturbatively. Our results for the equation of state are compared to previous quantum
Monte Carlo simulations which employed chiral two-body forces at next-to-next-to-leading order
(N2LO). In addition we include the effects of three-body forces at N2LO, which provide important
repulsion at densities higher than 0.02 fm−3, as well as two-body forces at N3LO.

PACS numbers: 21.65.Cd, 21.30.-x, 21.60.De, 21.60.Ka

Introduction.— Understanding the static and dynamic
properties of neutron matter will be key to addressing
fundamental questions at the interface of nuclear physics
and astrophysics. The structure and evolution of neu-
tron stars, the identification of viable sites for r-process
nucleosynthesis, and the interpretation of observed gravi-
tational waveforms from compact binary mergers depend
on neutron matter response functions and the equation
of state. The nuclear densities relevant in these phenom-
ena range from dilute neutron matter (ρ ≃ 0.0005 fm−3),
governed largely by the universal properties of unitary
Fermi systems, to several times nuclear saturation den-
sity (ρ0 ≃ 0.16 fm−3) found in the core of neutron stars.
Due to the large neutron-neutron scattering length, low-
density neutron matter is tractable through nonpertur-
bative many-body methods [1–5], while in the vicinity of
nuclear matter saturation density, the equation of state
can be computed to various degree of accuracy and con-
trolled approximations through a variety of many-body
methods [6–16].

Recently, a number of quantum Monte Carlo (QMC)
studies [17–19] of neutron matter have employed micro-
scopic nuclear forces derived within the framework of chi-
ral effective field theory (for recent reviews see Refs. [20–
22]). These works have focused on chiral two-body inter-
actions at order (Q/Λχ)3 (or next-to-next-leading order,
N2LO), where Q refers to the low-energy scale set by
the pion mass and nuclear momenta, while Λχ is the chi-
ral symmetry breaking scale set by, e.g., vector meson
masses.

In the present work we introduce a novel approach
to study strongly correlated nuclear systems on the
lattice employing auxiliary-field quantum Monte Carlo

(AFQMC) simulations free of the fermion sign problem.
The method enables the simulation of a larger number
of particles than alternative Monte Carlo implementa-
tions, and it offers an avenue to extend ab-initio many-
body methods into the medium-mass region of the nu-
clear chart. As an initial application of the method, we
focus on the equation of state of cold neutron matter
at low to intermediate densities computed from chiral
two-body forces at N3LO together with the chiral three-
neutron force at N2LO.

The auxiliary-field quantum Monte Carlo simulations
are performed free of the fermion sign problem by con-
structing an attractive, spin-independent effective Hamil-
tonian inspired by one-boson exchange models. The ex-
tent to which such a potential approximates the qualita-
tive features of realistic chiral nuclear forces depends, in
part, on the resolution scale at which the nuclear force
is constructed. Lowering the resolution scale weakens
the short-distance repulsion in the nucleon-nucleon (NN)
interaction [23–25], thereby enhancing the role of cor-
relations in the neutron matter ground state that can
be generated by such evolution Hamiltonians. In con-
tradistinction with Green Function Monte Carlo simula-
tions [1–3] employing Argonne nuclear potentials where
the short-range correlations have an important role, in
the present approach the emphasis is on the long-range
correlations.

Specifically, we consider the chiral nuclear interaction
described in Refs. [11, 26, 27] with the regulating function

f(p, p′) = exp[−(p/Λ)2n − (p′/Λ)2n], (1)

where n = 10 and Λ = 414 MeV/c. The value of n is
chosen to be large for consistency with the sharp lattice
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momentum cutoff. This high-precision nuclear potential
reproduces nucleon-nucleon elastic scattering phase shifts
up to lab energies of 200 MeV with χ2/DOF = 1.44 [28],
the properties of the deuteron, the binding energy and
lifetime of 3H (with the inclusion of two-body weak cur-
rents), as well as the empirical nuclear matter saturation
point and critical point of the liquid-gas phase transition
[29]. In comparison the optimized evolution potential,
expressed as a sum of attractive and repulsive Yukawa
interactions, is constrained by NN phase shifts as well
as the perturbative equation of state employing the full
chiral nuclear potential. The interacting ground state
is then obtained from this Hamiltonian by propagat-
ing a trial Slater-determinant wavefunction in imaginary
time using standard auxiliary-field quantum Monte Carlo
techniques [30, 31]. The expectation value of the full chi-
ral Hamiltonian in the evolved ground state on the one
hand gives an upper bound on the equation of state and
on the other hand can be interpreted as the first-order
perturbative correction in powers of the difference be-
tween the full chiral interaction and the evolution poten-
tial. The present approach establishes the framework for
future work directed toward accessing nucleon spectral
properties, linear response and various transport proper-
ties of dilute neutron matter, similar to what has been
demonstrated in the case of the unitary Fermi gas [32–
37]. Spin response and neutrino scattering and emissiv-
ity [38, 39] as well as collective modes in dilute neutron
matter [40] are examples of neutron star and supernova
properties that can be addressed.

Auxiliary-field quantum Monte Carlo simulations on

the lattice.— Quantum Monte Carlo approaches rely on
the very simple idea of projecting out the ground state
ψ of a many-body system with Hamiltonian Ĥ by means
of imaginary time evolution exp(−τĤ)ψ0

τ→∞

−→ ψ, where
ψ0 is an arbitrary initial state with non-vanishing over-
lap with the ground state. In practical realizations
the projection is performed by successive application of
the evolution operator for small imaginary time steps:
ψ(τ + ∆τ) = exp(−∆τ Ĥ)ψ(τ). This short evolution in
imaginary time is converted into integral form, and the
emerging multidimensional integration is performed by
means of Monte Carlo techniques. For fermionic systems
one has to introduce a prescription for avoiding the sign
problem. The most popular approaches are the “fixed-
node” and “fixed phase” approximations [41, 42], which
result in a variational approximation to the energy. In
this paper we utilize a different strategy to deal with
the sign problem for a large class of systems, which by
construction also results in a variational estimate of the
energy.

Our aim is to compute the ground state energy of
the Hamiltonian Ĥ = T̂ + V̂ , where T̂ is kinetic en-
ergy operator and V̂ = V̂2N + V̂3N + · · · is the sum of
two- and many-body forces. In the following we present
calculations including chiral 2N interactions up to order

N3LO in addition to the 3N interaction at order N2LO:
V̂ = V̂

(N3LO)
2N + V̂

(N2LO)
3N . We work with a low-momentum

chiral potential with cutoff parameter Λ = 414 MeV/c
and a steep regulator function [27]. Since the imagi-
nary time evolution of a wavefunction with the full chiral
Hamiltonian results in a severe sign problem, we rewrite
the Hamiltonian as

Ĥ = (T̂ + V̂ev) + (V̂ − V̂ev) ≡ Ĥev + δV̂ , (2)

where we assume that Ĥev represents a nonperturbative
problem that can be solved by means of QMC without the
sign problem. By construction we assume that δV can
be regarded as a small correction to the energy that can
be estimated in perturbation theory. To leading order we
find
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, (3)

and ψ(τ → ∞) ∼ exp(−τĤev)ψ0 is the normalized
ground state wavefunction of the evolution Hamiltonian.
It is clear that our approach provides an upper bound for
the ground state energy E of the chiral Hamiltonian.

To construct the evolution Hamiltonian we note that
each interaction that is spin-independent and attractive
in momentum space (Vev(q) 6 0) leads to a QMC simu-
lation free from the sign problem (see for example [30]).
Inspired by the one-boson exchange model, we express
the evolution potential as (including the pion):

Vev(q) =
∑

α=π,σ,ω

Vα
m2
αc

2 + q2
f(q), (4)

and we apply a regulator function of the form f(q) =
exp[−(q/Λ)30]. These coupling constants and masses are
fit (under the constraint that the sum is not positive) to
minimize the expression

χ2 =
∑

i,j

w(j)
[

δ
(j)
EFT(Ei) − δ(j)ev (Ei)

]2

+α
[

E
(pert.)
EFT − E(pert.)

ev

]2

(5)

where δ(j)(Ei) are phase shifts for partial waves j =
1S0,

3P0,
3P1,

3P2 obtained both for the chiral N3LO and
the evolution potentials at given energy Ei, and the
weights w(j) are respectively 1, 19 ,

3
9 ,

5
9 . Thus the P -

waves are weighted according their degeneracy. The
range of phase shifts included in the fitting procedure
is density dependent and contains lab energies from 0 to
min[6Elab(kF ), 350] MeV where Elab(kF ) = 2k2F /M and
kF is the Fermi momentum. A somewhat similar ap-
proach to handle the fermion sign problem was advocated
in Ref. [43].

The role of the last term in Eq. (5) is to ensure that
the total energy of the neutron system interacting with
the evolution potential and computed from second-order
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FIG. 1: (Color online) Momentum-space evolution potentials
(see Eq. (4)) employed in the imaginary-time propagation of
the trial wavefunction, corresponding to different densities.
In the inset is shown the expectation values of the evolution
potential (red solid circles) and the two-body chiral potential
(blue squares) computed for the density n = 0.011 fm−3.

perturbation theory E
(pert.)
ev is the same as the energy

computed with the chiral potential E
(pert.)
EFT in the same

framework. The “stiffness” of this requirement is gov-
erned by the parameter α, and in practice we choose it
so that differences in the perturbative estimates of the
energy differ by less that 1%. We note also that this
kind of evolution Hamiltonian is not necessarily unique,
as described in the Results section below.

Note that by construction the emerging evolution po-
tential is density dependent, as in the case of the in-
medium similarity renormalization group approach [44].
Intuitively, it can be treated as an effective, in-medium
two-body interaction, where the density dependence ac-
counts for repulsive effects of nuclear three-body forces,
Pauli blocking in the medium, etc. In the zero-density
limit the second term of Eq. (5) is negligible and the
potential is fitted to phase shifts only and it reproduces
correctly low energy scattering parameters, like scatter-
ing length or effective range.

Once the evolution potential is constructed, we gener-
ate the corresponding many-body wavefunction by means
of AFQMC simulations. We consider a set of N neutrons
interacting on a three-dimensional cubic spatial lattice
of extent L = Nxl and impose periodic boundary condi-
tions. The lattice spacing l = 1.5 fm provides a natural
ultraviolet cutoff scale, which we impose to be spherical
in momentum space and consistent with the cutoff scale
of the chiral theory, i.e. Λ = pcut = π~/l = 414 MeV/c.
The imaginary-time evolution operator exp[−τĤev] is ex-
panded using a Trotter-Suzuki decomposition with tem-
poral lattice spacing ∆τ , and the interaction Vev is repre-
sented by means of a continuous Hubbard-Stratonovich
(HS) transformation. In order to get faster convergence

in the Monte-Carlo evaluation, we approximate the Gaus-
sian quadrature emerging from the HS decomposition by
a 5-points quadrature formula, which introduces an er-
ror that is small compared to that originating from the
Suzuki-Trotter formula. The statistical error for Monte-
Carlo quadrature estimation is below 1%.

In this paper we work with lattice size Nx = 10, which
in previous studies of the unitary Fermi gas [31, 37] led
to systematic errors on the order of at most ∼ 10%. The
main contribution to this error came from high momenta
states beyond the momentum cut-off due to the slow de-
cay of the universal high momentum tail in the occu-
pation probability n(p) ∼ p−4. In the present work with
chiral nuclear forces, the momentum distribution exhibits
an exponential falloff (see Results section below), and
therefore we expect improved finite-volume systematic
errors. We have developed a new parallel code for these
analyses and checked that calculations performed at zero
temperature reproduce with sufficient accuracy the zero-
temperature Bertsch parameter of the unitary Fermi gas.
In particular, the superfluid gap of the unitary Fermi
gas and the related properties are accurately reproduced.
We consider densities from 0.01 fm−3 to 0.10 fm−3, cor-
responding to particle numbers ranging from 38 to 342,
thus larger than any previous calculations of neutron
matter. In order to reduce the discretization errors, we
work only with particle numbers corresponding to closed
shells in the free Fermi gas model on the lattice. More-
over, we have demonstrated the feasibility of exploring
the nonperturbative properties of dilute neutron matter.
We performed simulations with 38 particles in 123, 143

and 163 boxes while keeping the lattice spacing fixed at
1.5 fm−3, which correspond to densities 0.0065, 0.0041
and 0.0028, fm−3 respectively.

In addition to discretization errors and statistical er-
rors (below 1%), our approach introduces another source
of error, related to the fact that we approximate the
ground-state wavefunction of the chiral Hamiltonian by
the ground-state of the evolution Hamiltonian. The best
strategy to quantify this error is to calculate the second-
order correction in Eq. (3). In this paper we show only
that the first-order correction is small (at most 10%) and
comparable to discretization errors. Assuming the per-
turbativeness of the expansion in Eq. (3) we conclude
that discretization errors are dominant in our approach,
however, strict quantification will be subject of future
studies.

Results.— In Fig. 1 we plot the evolution potentials as
a function of the momentum transfer q for different den-
sities obtained by minimizing the χ2 function in Eq. (5).
Different initial choices for the coupling strengths and
masses of the “σ” and “ω” mesons resulted in nearly
identical evolution potentials, except at the largest den-
sities where variations in the starting values gave a 2%
spread in the final energy per particle. We observe that
the imposed energy constraint leads to a decrease in the
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FIG. 2: (Color online) Occupation probabilities of neutron
matter as a function of momentum for selected densities.

overall strength of the evolution potentials as the density
is increased. Physically this accounts for the presence of
repulsive two- and three-body forces that become more
important as the density increases, so on average the to-
tal strength of the attractive nuclear potential must be
reduced.

As an initial trial wavefunction we consider the Slater
determinant of the lowestN occupied discrete plane wave
orbitals. The expectation values of the evolution Hamil-
tonian and the chiral nuclear potential at imaginary time
τ = 0 are then simply the lattice Hartree-Fock energies.
Deviations between the continuum Hartree-Fock predic-
tions and those of the lattice were found to be at most
a few percent when the particle number corresponds to
closed shells in the free Fermi gas model on the lattice.
In the inset of Fig. 1 we show the evolution in imaginary
time of 〈ψ(τ)|Ĥev|ψ(τ)〉 and 〈ψ(τ)|Ĥ2N

EFT|ψ(τ)〉 for den-
sity n = 0.011 fm−3. Note that the left- and right-hand
wavefunctions are evolved separately. Typically we ob-
serve a very good convergence for imaginary times about
τ ≈ 0.1 MeV−1, which requires about 300 imaginary time
steps. Apart from a nearly constant shift, the imaginary-
time dependence for both expectation values is very simi-
lar, indicating that our fitting procedure indeed produces
the evolution potential, which correctly captures global
features of the chiral potential.

Our calculation procedure gives us access to the wave
function in both the coordinate and momentum repre-
sentation. In Fig. 2 we show the momentum distribution
associated with the evolution Hamiltonian Ĥev for pure
neutron matter at selected densities. As the density in-
creases and the evolution Hamiltonian weakens, the de-
pletion in the occupation probability at low momenta is
reduced. In all simulations the single-particle occupation
probabilities for the highest energy states is below one
percent.

In Fig. 3 we present AFQMC results for the equa-
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FIG. 3: (Color online) Equation of state of pure neutron
matter calculated using AFQMC with the N3LO chiral two-
nucleon potential (red circles) plus the N2LO three-nucleon
contribution (blue diamonds). For comparison we show the
results of Gezerlis et al. [18], Roggero et al. [19] and Gezerlis &
Carlson [45] of QMC calculations with two-body forces alone.
In the upper inset we show the contributions to the energy
per particle from different orders in the chiral expansion (“+”
and “−” refer to repulsive and attractive components, respec-
tively). The lower inset demonstrates that the last term in
Eq. (3) is perturbative.

tion of state of pure neutron matter [46]. Evaluating
only the chiral two-nucleon force in the correlated ground
state (shown in red solid circles), we find that the equa-
tion of state is consistent with previous quantum Monte
Carlo simulations employing N2LO chiral 2N interactions
[18, 19]. At very low densities our results match perfectly
onto the QMC results obtained with the effective interac-
tion which captures correctly only scattering length and
effective range [45]. At these low densities the pairing
correlations are very strong (∆/εF ≈ 1/4, where εF is
the Fermi energy of a free neutron gas with the same
density) and the nice agreement with [45] demonstrates
that we capture them very accurately. The chiral nuclear
potential most similar the one employed in the current
study is the local 400 MeV cutoff potential of Ref. [18]
(see the lower line of gray open circles in Fig. 3). Our
results for the energy per particle are more repulsive by
about 1 MeV, and although further investigations are
required, we note that the chiral nuclear interaction in
Ref. [18] is more strongly attractive in relative P -waves
than the potential we employ. Computing also the ex-
pectation value of the N2LO three-nucleon force over the
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evolved wavefunction introduces significant additional re-
pulsion above n = 0.02 fm−3, as seen from the solid blue
diamonds in Fig. 3. Differences between the expectation
value of the evolution Hamiltonian and the full chiral nu-
clear 2N + 3N interaction (which can be regarded as the
first-order correction to the energy in perturbation the-
ory) are small as shown in the lower-right inset to Fig.
3. In the upper-left inset, we show the expectation value
of the chiral Hamiltonian decomposed according to the
chiral order.

In the above calculations we translate the lattice re-
sults to the continuum limit with the following proce-
dure: i) from the lattice simulations we extract the di-

mensionless quantity
〈ψ|Ô|ψ〉
〈ψ0|Ô|ψ0〉

, where ψ is the ground

state of the evolution Hamiltonian, ψ0 is the free Fermi
gas wave function, and both expectation values are com-
puted on the lattice, ii) to convert the lattice result into
a dimensionful quantity we multiply by 〈ψ0|Ô|ψ0〉

(cont.),
computed in the continuum limit.
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