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We show that Lorentz invariance is realized nontrivially in the classical action of a massless
spin- 1

2
particle with definite helicity. We find that the ordinary Lorentz transformation is modified

by a shift orthogonal to the boost vector and the particle momentum. The shift ensures angular
momentum conservation in particle collisions and implies a nonlocality of the collision term in the
Lorentz-invariant kinetic theory due to side jumps. We show that 2/3 of the chiral-vortical effect
for a uniformly rotating particle distribution can be attributed to the magnetic moment coupling
required by the Lorentz invariance. We also show how the classical action can be obtained by taking
the classical limit of the path integral for a Weyl particle.

PACS numbers: 72.10.Bg, 03.65.Vf, 12.38.Mh

Introduction.—The parity-odd response of a chiral
medium and its deep relationship to topology and quan-
tum anomalies have attracted significant theoretical in-
terest. Two such phenomena, the chiral magnetic and
chiral vortical effects (CME and CVE), which is the ap-
pearance of nonzero current in a magnetic field or when
the system is in rotation, have been considered some time
ago in astrophysical context [1, 2]. More recently, the
interest in such phenomena was rekindled by develop-
ments in various subfields of physics. It was observed
that charge-dependent correlations can be used to de-
tect the CME in heavy-ion collisions [3]. Independently,
the chiral vortical effect has been found in a calcula-
tion using gauge/gravity duality [4, 5], and a general
argument based on second law of thermodynamics was
put forward in Ref. [6] to demonstrate the generality of
this result. The recent experimental discovery of “3D
graphene” [7, 8] brings closer the possibility of realizing
the materials with non-trivial chiral properties, such as
Weyl semimetals [9].

One promising approach to explore anomaly-related
phenomena is the kinetic theory, which can go beyond
the regime of thermodynamic equilibrium. This kinetic
approach is applicable when the external fields and the
interactions between the (quasi-)particles are sufficiently
weak, so each particle can be considered as moving along
a classical trajectory, punctuated by rare collisions. Be-
tween collisions, one has essentially a single-particle prob-
lem. The information about the quantum anomaly is en-
coded in the momentum-space Berry curvature [10]. The
classical action for such a motion can be derived either
from a single-particle quantum Hamiltonian [11] or, more
directly, from field theory [12].

There is, however, a puzzling aspect of the kinetic the-
ory: it does not have a manifest Lorentz symmetry, which
it should inherit from the original quantum field theory.
The issue was first raised in Ref. [12] by comparing the
kinetic theory and field theory results for a Fermi-liquid

at zero temperature and later, in Ref.[13], at finite tem-
perature. In this Letter we confirm the suggestion made
in Ref. [12] that Lorentz symmetry requires an additional
magnetic moment coupling term in the classical action of
the particle. Unexpectedly, we also find that the Lorentz
transformation laws of the coordinates and momenta con-
tain extra terms associated with particle spin. Another
nontrivial consequence of the analysis is a magnetization
current contribution to the total current, which is re-
quired to reproduce the correct (Lorentz-covariant) mag-
nitude of the CVE.

Classical action..—We shall argue that the motion of
a massless right-handed spin- 1

2 particle in an external
electromagnetic field is described, in the classical regime,
by the following phase-space action,

I =

∫
(p+A) · dx− (E + Φ)dt− ap · dp, (1)

where ap is the Berry connection such that

b ≡∇× a =
p̂

2|p|2
, p̂ ≡ p

|p|
, (2)

while the dispersion relation

E ≡ |p| − p̂ ·B
2|p|

(3)

is modified to linear order in the field by the magnetic
moment coupling [12, 13] (see also Ref. [14] for a com-
prehensive review of earlier studies of massive fermions).
Although we work in the convenient units ~ = c = 1, it
is easy to see, by restoring ~, that both the Berry con-
nection term in Eq. (1) and the magnetic coupling term
in Eq. (3) are of order O(~). Later in the Letter, we will
derive the action (1) from the Weyl Hamiltonian by tak-
ing the classical limit of a path integral, but for now we
take it as the starting point.

Lorentz invariance.—To zeroth order in ~ the action,∫
(p+A) · dx− (|p|+ Φ)dt, which is the action of a spin-

less particle, is invariant with respect to the infinitesimal
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Lorentz boost

δβx = βt; δβt = β · x; δβp = β|p|;
δβB = β ×E; δβE = −β ×B; (4)

The O(~) terms in (1) are not invariant with respect to
this boost , and the action changes by

δβI =

∫ [
β × p̂
2|p|

(ṗ−E − p̂×B) +
B · p̂
2|p|

β ·(ẋ− p̂)

]
dt.

(5)
However, noting that the two expressions in parentheses
are the variations of the O(~0) part of action with respect
to x and p respectively, one can find a modified Lorentz
transformation for x and p

δ′βx = βt+
β × p̂
2|p|

; δ′βp = βE +
β × p̂
2|p|

×B; (6)

under which the action is invariant up to order ~ inclu-
sively: δ′βI = O(~2).

Thus, the action (1) has, in fact, a hidden Lorentz
invariance, under which the position and the momentum
of the particle transform in a nontrivial manner. We
now give a physical interpretation of the modified Lorentz
transformations.

Angular momentum and side jump.—We will assume
for simplicity that E = B = 0. Since the Berry con-
nection comes into play when the particle changes its
momentum, we consider an elastic scattering of two par-
ticles. For simplicity, consider the process in the center
of mass frame, and assume zero impact parameter. The
angular momentum conservation is trivial in this frame:
Jin = Jout = 0 with both orbital L and spin S contribu-
tions vanishing before and after the collision.

Let us now perform a Lorentz boost along the the di-
rection of motion of one of the incoming particles. Then
the total angular momentum of incoming particles is still
zero Jin = 0. However, the spins of the outgoing particles
no longer cancel each other, since their momenta are not
collinear in the new frame. That means that the orbital
momentum of the outgoing pair should be nonzero, which
would be impossible if the particle trajectories were going
through a single collision point.

However, the modified Lorentz transformation in
Eq. (6) shifts the trajectory in the direction perpendic-
ular to the boost and the particle momentum: ∆x =
β × p̂/(2|p|). Since the momenta of the particles, p and
−p, are opposite before the boost, the shifts are also op-
posite. As a result the two outgoing particles are moving
in two parallel planes. It is easy to check that such a
shift leads to a contribution to the orbital momentum

Lout =
β × p̂
|p|

× p (7)

equal and opposite to the total spin of the outgoing par-
ticles

Sout = δβ(p̂) =
β − p̂(β · p̂)

|p|
= −Lout. (8)

FIG. 1: (color online) Side jump

Therefore, collisions of two particles with spin involves
a shift in the position. This is similar to the “side jump”
phenomenon in impurity scatterings with spin-orbit in-
teraction [15]. The magnitude of the side jump is frame-
dependent and does not depend on the details of the colli-
sion. This phenomenon has a classical analog: the center
of mass of a spinning extended particle is frame depen-
dent [16]. We expect the side jump to be important for
constructing Lorentz invariant chiral kinetic theory with
collisions, and that in such a theory the collision kernel
must be nonlocal in space and time.

Lorentz algebra.—We now check that the modi-
fied Lorentz transformations satisfy the algebra of the
Lorentz group. For simplicity, we set the electromag-
netic field to zero – similar results hold in the presence
of the field. It is well-known that the commutator of the
ordinary Lorentz transformations is a rotation. For ex-
ample, [δβ1

, δβ2
]x = ϕ× x, where ϕ ≡ β2 × β1. For the

modified Lorentz transformation, however,

[δ′β1
, δ′β2

]x = ϕ× x+ p̂ δt ; [δ′β1
, δ′β2

]t = δt , (9)

where δt = −ϕ · p̂/|p|. We see that the Lorentz algebra
closes up to an additional shift δt and δx = δt p̂ which, by
virtue of the fact that dx = dt p̂ on equations of motion,
is an invariance of the action (for a classical trajectory it
amounts to time reparametrization). Using this (gauge)
freedom, one can accompany boost by such a transfor-
mation, i.e., define δ′′βt = 0 and δ′′βx = δ′βx − p̂δβt,
so that the algebra will close: [δ′′β1

, δ′′β2
]x = ϕ × x and

[δ′′β1
, δ′′β2

]t = 0. This would correspond (at B = 0) to the
representation of the Lorentz algebra found in Ref. [17].

Chiral vortical effect.—Another nontrivial consequence
of the magnetic moment coupling is a contribution to the
current which turns out to be essential for reproducing
correct value of the chiral vortical effect.

The current is determined by variation of the action
with respect to external gauge potentialA. The resulting
single-particle current (in zero field) is given by

J(x, t) ≡ δI
δA(x, t)

∣∣∣∣∣
A=0

=

(
p̂− p̂

2|p|
×∇

)
δ3(x− x′(t))

(10)
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where x′(t) is the position of the particle at time t. Con-
sider now an ensemble of particles with a distribution
function f . The corresponding current is given by

J(x, t) =

∫
d3p

(2π)3

(
p̂f − p̂

2|p|
×∇f

)
. (11)

The first term is the classical Liouville current, while the
second term, which is due to the magnetic moment cou-
pling, is O(~). It is trivially conserved because it can be
written as ∇×M , where

M =

∫
d3p

(2π)3

p̂

2|p|
f, (12)

is the total magnetization (the sum of the magnetic mo-
ments). However, this contribution is needed to make
the current a Lorentz vector and, as we shall now show,
to reproduce the correct magnitude of the CVE.

Consider a distribution f such that there exist a frame
in which the distribution is isotropic in momentum. De-
noting the energy of particles in this frame ε′ we can
write f = f(ε′). Now consider a distribution which, in
addition, varies very slowly in space because the velocity
u of the frame in which the distribution in momentum
is isotropic varies very slowly with space point x. Since
the distribution function is a Lorentz scalar we can write
the distribution in the lab frame as f = f(ε′), where
ε′ = ε − p · u − λp̂ · ω is the energy in the locally co-
moving frame expressed in terms of the lab energy ε and
momentum p and the helicity of the particle λ = 1

2 . The
last term is present if the velocity distribution has vor-
ticity ω = ∇ × u/2 since the particle carries intrinsic
angular momentum λp̂.

The shift −λp̂ · ω arises naturally when f is a local
equilibrium solution of Boltzmann equation. The de-
tailed balance dictates that, for fermions, ln[f/(1 − f)]
is a linear function of the conserved quantities ε, p and
angular momentum j, i.e., −β(ε−p·u0−j ·α) with some
constants β, u0 and α. Inserting j = x × p + λp̂ gives
−β(ε− p ·u− λp̂ ·α) with u ≡ u0 +α×x. This means
the equilibrium distribution could be inertially moving
as well as rotating and that α = ω.

Substituting the distribution f(ε − p ·u − λp̂ ·ω) into
Eq. (11) and Taylor expanding to linear order in u and
ω one finds that magnetization current contributes 2/3
of the total current:

J = −
∫

d3p

(2π)3

∂f

∂ε

1

2
[ p̂(p̂ · ω)− p̂×∇(p̂ · u) ]

= −ω
2

∫
d3p

(2π)3

∂f

∂ε

[
1

3
+

2

3

]
. (13)

where we used the isotropy of f to replace p̂ip̂j by δij/3
under the integral. Now using ε = |p|, taking the integral
over angular directions of p and then integrating by parts,

we find for the current:

J =
ω

4π2

∫ ∞
0

dε 2εf, (14)

which agrees with the expression for the CVE obtained
from the CME by the substitution B → 2εω (for
isotropic distributions) [11]. Such an agreement between
the results in different frames is another manifestation of
the Lorentz covariance of the current in Eq. (11).

Classical action from path integral.—We now show
that the action (1), including the magnetic moment cou-
pling, can be derived systematically from the path inte-
gral. This derivation is different but complementary to
the previously developed wave-packet approach for mas-
sive fermions (see Ref. [14] for a review). Path-integral
derivation was introduced for the free case in Ref. [11],
however, the coupling to electromagnetic field was incor-
rectly assumed to be minimal. Here we show that a care-
ful analysis reveals the presence of the magnetic moment
coupling dictated by Lorentz invariance.

We start from a path-integral representation of an am-
plitude for the Weyl Hamiltonian in an external field

H = σ · (p−A(x, t)) + Φ(x, t) (15)

where x and p are canonically conjugate operators of
position and momentum: [xi, pj ] = iδij . Inserting sums
over complete sets of momentum and coordinate eigen-
states, a transition amplitude can be rewritten as a ma-
trix element of the path-ordered products of 2 × 2 ma-
trices e−iH∆t, where x(t) and p(t) are now classical c-
number variables of path integration. As in Ref. [11], we
diagonalize each of these matrices along the path using
p-dependent matrix Vp satisfying V †pσ ·pVp = σ3|p|.

In the classical regime, we can neglect off-diagonal
elements of the propagator matrix and consider only
the contribution given by the diagonal matrix elements
between positive-energy eigenvectors of σ3|p| which we
denote as [. . .]++. The key ingredient for the mag-
netic moment coupling is found in the matrix element[
V †p e

iσ·A∆tVp−∆p

]
++

which we can evaluate using Gor-

don identity to linear order in ∆p = p− p′:

[
V †p e

iσ·A∆tVp−∆p

]
++

= u†pup′ exp

[
i
p̂+ p̂′

2
·A∆t

+
∆p× p̂

2|p|
·A∆t

]
+O(∆p2,∆t2). (16)

where up is the positive energy eigenvector—the solution
of the Weyl equation: σ · pup = |p|up. The first term
in the square brackets combines with neighboring factors
e−i|p|∆t in the path-ordered product to replace |p| with
|p−A| ≈ p− p̂ ·A+O(A2/|p|) [20].

Naively, we could neglect the last term in the square
brackets in Eq. (16) because it contains an additional fac-
tor ∆p. However, p and p′ are independent integration



4

variables and the difference ∆p is not small in general.
Rather, it is the factor

∏
exp(ip ·∆x) =

∏
exp(−ix ·∆p)

which, upon integration over x, makes rapidly oscillating
contributions at large ∆p cancel out. If ∆p multiplies a
function of x the result of integration is the same as if
we replaced ∆p with −i∂/∂x as in this example:∫

dx e−ix∆p∆pF (x) = −i
∫
dx e−ix∆p dF (x)

dx
. (17)

This relation is the path-integral representation of the
canonical commutation relation between x and p (simi-
lar to the commutation relation between coordinate and
velocity discussed in Ref. [18]). Thus we cannot consider
∆p as small in the second term in Eq. (16) if A depends
on x. Replacing ∆p with −i∂/∂x we find that this term
contributes ip̂·B/(2|p|)∆t to the phase, representing the
interaction energy of the particle’s magnetic moment.

Finally, the factor u†pup′ = exp(−iap ·∆p) is the
Berry phase. If we express it using the physical (gauge-
invariant) momentum P = p−A, we can, to linear order
in A, write

〈. . . u†pup′ . . .〉 = 〈. . . (1− iap ·∆p) . . .〉
= 〈. . . (1− i(aP ·∆P + ∆p× b ·A) . . .〉

= 〈. . . (1 + b ·B − iaP ·∆P ) . . .〉
= 〈. . . (1 + b ·B)e−iaP ·∆P . . .〉 (18)

where 〈. . . . . .〉 denote remaining factors and limits in the
path integral and in the third line we replaced ∆p with
−i∂/∂x as before. We find that if we change variables
to physical momentum P , the factor u†pup′ , expanded to
order ∆P , and under path integration, cannot be treated
as a pure phase. The magnitude factor (1 + b · B) in
Eq. (18) combined with the path-integral measure dx dP
gives the correct conserved (up to the anomaly [10, 11])
Liouville measure for a Weyl particle.

Conclusions.—We have shown that the theory of a sin-
gle particle with spin-1/2 and definite helicity can be
made Lorentz-invariant if one includes one term in the
action that corresponds to the interaction between the
particle’s magnetic moment with the magnetic field. The
magnitude of the magnetic moment is completely deter-
mined by Lorentz invariance. We have also shown that
the Lorentz transformations of the particle’s coordinates
and momentum components are nontrivial, and that they
are related to the side jumps in scattering processes.

Although our action has Lorentz symmetry, it is not
written in a manifestly Lorentz invariant manner. We
are currently developing a manifestly Lorentz-invariant
formulation, which will be reported elsewhere. It would
also be interesting to generalize this analysis to higher
dimensions and non-abelian anomalies [19].

From the equation of motion of a single particle one
can go to the kinetic description in terms of a Boltz-
mann equation. We expect that the side jumps required

by Lorentz invariance are necessary for the collision term
in the Boltzmann equation to be consistent with angular
momentum conservation. Understanding how to write
down a correct kinetic theory of chiral particles, includ-
ing their interactions, will provide a link, so far missing,
between quantum field theory and hydrodynamics with
anomalies and would allow, in particular, treatments of
processes far from equilibrium in theories with anomalies.
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