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Ref. [1] revisits formation of phase space holes and
clumps (HC) in a one-dimensional plasma model. The
plasma contains a dilute collisionless electron beam with
a plateau centered at the plasma resonance. The linear
dispersion relation (DR) is studied for waves near that
resonance. The plateau instability is reported, and HC
formation is attributed to dissipative destabilization of
negative-energy modes at the plateau edges. But this
analysis is not quite complete. A more detailed calcu-
lation shows, for weak dissipation, that: (i) the plateau
instability is the standard bump-on-tail (BTI) instability,
whose rate continues analytically to that of the plateau-
less BTI; and (ii) destabilization of edge modes is not
universal to HC formation.
Suppose some bulk-plasma dielectric ǫp(ω, k). Adding

a beam with velocity distribution F0(v) [
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notes definitions, and L stands for a Landau contour.
Suppose F0 = F̄ + δF0, where F̄ is a distribution with
scale u0 ≫ ∆v, and δF0(v)

.
= [F̄ (vc)− F̄ (v)]H(∆v−|v−

vc|) describes the plateau centered at v = vc [H(v) is the
unit step function]; i.e., the beam is flat [F0(v) = F̄ (vc)]
at |v− vc| < ∆v. Then ǫ(ω, k) ≈ ǭ(ω, k)− iπβ+ δǫ(ω, k),
assuming |ω/k − vc| ≪ u0 (and k > 0). Here β

.
=
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b F̄
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2, ǭ(ω, k)

.
= ǫp(ω, k)− (ω2
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∫
[F̄ ′(v)/(v −

ω/k)] dv, P denotes the principal-value integral through
v = ω/k. Also, δǫ

.
= 2βw/(w2 − 1) + βJ is due to δF0;

w
.
= (ω − kvc)/(k∆v), and J
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= L

∫ +1
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(z − w)−1 dz =

ln(1−w)− ln(−1−w)+ iπH(1−|wr|) (1− sgnwi), wr
.
=

Rew, and wi
.
= Imw. Assume the branch cut of ln z to

be at real z ∈ (−∞, 0). Then, ln(−1−w) = −iπ sgnwi+
ln(1 + w), so ǫ(ω, k) ≈ ǭ(ω, k) + β [g(w) + σ(w)], g(w)

.
=

ln(1 − w) − ln(1 + w) + 2βw/(w2 − 1), and σ(w)
.
=

−2πiH(−wi)H(|wr| − 1). Expanding ǭ(ω, k) in w gives
ǫ(ω, k) ≈ β [κ+ µw+ g(w) + σ(w)], and the DR is ǫ = 0,
where κ

.
= β−1ǭ(kvc, k), µ

.
= (k∆v/β) [∂ω ǭ(ω, k)]ω=kvc .

In contrast with Ref. [1], this DR contains an addi-
tional term, σ(w). (Ref. [1] is also limited to κ = 0
and specific ǭ.) That is a far-reaching issue. On one
hand, nonzero σ ensures that ǫ(ω, k) is analytic for small
wi at wr 6= ±1, as it should be. On the other hand,

nonzero σ renders ǫ(ω, k) discontinuous for all wi ≤ 0 at
wr = ±1. This is also understood. Indeed, for Imω < 0,
ǫ(ω, k) was constructed by analytic continuation. That
requires continuation of F0(v) to complex v; but F0(v) is
nonanalytic already at real v, so its continuation is am-
biguous. Predictions based on the abrupt-plateau model
for Imω < 0 thereby must be taken with caution, except
at small |Imω| and far from Reω = k(vc ± ∆v). This
fact is also missed in Ref. [1], but, if it is taken into ac-
count, one discovers the following. For a narrow plateau
(µ ≪ 1), the nonzero ws found in Ref. [1] continue ana-
lytically into w ≈ (−κ∓ iπ)/µ ≫ 1. These are recast as
ǭ(ω, k)± iπβ ≈ 0. But the one with wi < 0 is unphysical,
as was explained. Hence we have just ǭ(ω, k)− iπβ ≈ 0,
and that is the plateau-less BTI dispersion. This is not
a coincidence: in v space, the real axis is then far from
v = ω/k; hence the fine structure of the real-velocity dis-
tribution, such as a narrow plateau, cannot matter. In
contrast, at µ >

∼ 1, the distance Imω/k from the pole to
the axis is <∼ ∆v; then the BTI can be suppressed.

In other words, a detailed calculation shows that there
are no plateau-specific linear collisionless instabilities
(unless the BTI is restricted, unjustly, to smooth F0).
Also, dissipative destabilization of edge modes is not uni-
versal to HC formation. Suppose zero dissipation. As
phase space volume is conserved, field oscillations cannot
affect the beam distribution F inside the plateau, even if
Reω = kvc. Perturbations of F are thus confined to the
edges. That is where wave breaking occurs then, so F is
impregnated with holes at v >

∼ vc + ∆v and clumps at
v <
∼ vc −∆v, and they hence act as independent waves.

Edge modes are not required for this (away from the BTI
threshold). Only a friction force is needed, later, to drag
HC away from the plateau.
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