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We argue that superconductivity in the coexistence region with spin-density-wave (SDW) order in
weakly doped Fe-pnictides differs qualitatively from the ordinary s+− state outside the coexistence
region as it develops an additional gap component which is a mixture of intra-pocket singlet (s++)
and inter-pocket spin-triplet pairings (the t−state). The coupling constant for the t−channel is
proportional to the SDW order and involves interactions that do not contribute to superconductivity
outside of the SDW region. We argue that the s+− and t−type superconducting orders coexist at low
temperatures, and the relative phase between the two is in general different from 0 or π, manifesting
explicitly the breaking of the time-reversal symmetry promoted by long-range SDW order. We argue
that time-reversal may get broken even before true superconductivity develops.

PACS numbers:

Introduction Iron-based superconductors (FeSCs)
have been the subject of intense study since 20081. Their
rich phase diagram includes the regions of superconduc-
tivity (SC), spin density wave (SDW), nematic order, and
a region where SDW, SC, and nematic order coexist2–4.
Outside the SDW/nematic region, SC develops in the
spin-singlet channel and in most of Fe-based supercon-
ductors it has s−wave symmetry with a π phase shift
between the SC order parameters on hole and on elec-
tron pockets ( s+− gap structure)5,6.

It has been recently argued by several groups that the
multiband structure of FeSCs allows for superconduct-
ing states with more exotic properties7–21. Of particular
interest are SC states that break time-reversal symme-
try (TRS), as such states have a plethora of interest-
ing properties like, e.g., novel collective modes15,20,22–24.
TRS-broken states emerge when the phase differences ψi
between SC order parameters on different Fermi surfaces
(FS) are not multiples of π.

The two current proposals for TRS breaking in FeSCs
are s + id7,11–13,19 and s + is states10,15,20,21. The first
emerges when attractions in the d−wave and s−wave
channels are of near-equal strength. The second emerges
when there is a competition between different s+− states
favored by inter-pocket and intra-pocket interactions.
Both of these proposals were, however, argued to be ap-
plicable only to strongly hole or electron-doped FeSCc.
For weakly/moderately doped FeSCs the common belief
is that s+− superconductivity is robust.

In this communication we argue that an exotic state
which breaks TRS can emerge already at low doping,
in a range where SC is known4,25–32 to emerge from a
pre-existing SDW state. We show that SDW order in-
duces attraction in another pairing channel, for which
the order parameter is an admixture of spin-singlet and
spin-triplet components (the two are mixed in the SDW
state since spin rotational symmetry is broken). Because
a triplet component is involved, we call this a t-state.
In the absence of nesting, s+− and t− components are

linearly coupled, and the development of s+− SC order
at Tc triggers an immediate appearance of t−order com-
ponent with the same phase (s + t state or s − t state,
depending the sign of the bilinear coupling). Such a state
has been discussed in the SDW/SC coexistence region of
the cuprates, organic and heavy fermion materials33–39

and the Fe-pnictides, in the context of nodeless super-
conductivity immediately below Tc < Tsdw (Refs. 40–47).

In this letter we show that the s ± t state exists only
near Tc, while at a lower T there is a phase transition
into a state where a relative phase between the two SC
components is different from 0 or π, i.e., the order param-
eter has a s + eiθt form. This order parameter does not
transform into itself under TRS, unlike s + t order. As
a result, the order parameter manifold contains an addi-
tional Z2 Ising degree of freedom, which gets broken by
selection of +θ or −θ. The TRS broken state emerges via
a phase transition inside a superconductor, which should
have experimental manifestations. We note in this regard
that, although the TRS of the system is formally broken
already at the SDW transition temperature TN > Tc, the
TR operation transforms one magnetic state into another
state from the same O(3) manifold, i.e., there is no ad-
ditional Z2 degree of freedom which one could associate
with TRS. Only when θ becomes different from 0 or π,
does the order parameter manifold acquire an additional
Z2 degree of freedom associated with TRS.

We show that the s+ eiθt state emerges already in the
minimal three-band model of one circular hole pocket and
two symmetry-related elliptical electron pockets40,42,48.
The presence of the other hole pockets complicates
the analysis but does not lead to new physics. We
argue that, when the original 4-fermion interactions
are rewritten in terms of a and b fermions, which
describe states near the two reconstructed FSs (Fig.
2) and projected onto the particle-particle subset, the
two different pairing channels emerge. One is the
usual spin-singlet s+− channel, for which the SC order
parameter is ∆1 ∝ ∑

k iσ
y
αβ [〈akαa−kβ〉 − 〈bkαb−kβ〉].



2

The second pairing channel, with order parameter
∆2, has two contributions. One is a spin-triplet
inter-pocket term

∑

k σ
x
αβ〈akαb−kβ〉) (hence the name

t−state), and the other is a spin-singlet s++ type term
∑

k iσ
y
αβ [〈akαa−kβ〉 + 〈bkαb−kβ〉]. The presence of the

s++ component in ∆2 is crucial as with it the kernel in
the gap equation for ∆2 is logarithmic (as it is for ∆1),
implying that even a weak attraction gives rise to super-
conductivity. We emphasize that the triplet component
of ∆2, 〈akαb−kβ〉, would not spontaneously emerge by it-
self because the FSs for a and b fermions are disconnected
and appears only because it couples linearly to the s++

component 〈akαa−kβ〉 + 〈bkαb−kβ〉. A similar situation
emerges in Fe-pnictides with only electron pockets49.

The structure of ∆1 and ∆2 is shown in Figs. 1a and
1b. Our analysis of the non-linear gap equations for ∆1

and ∆2 shows that the two SC orders coexist in some
parameter range, and the relative phase between the two
is different from 0 or π in the general case when the two
orders are linearly coupled in the Ginzburg-Landau (GL)
functional, and equals to ±π/2 for the special case when
linear coupling is absent (Fig. 3).

(a)

(b)

(c)

Figure 1: The structure of gap functions in different SC states:
(a) pure s+− state, (b) pure t− state, (c) s+it state with ±π/2
phase difference between s+− and t− components. Operators
a and b describe fermions near the reconstructed FSs.

The model. We consider a three band model with c
fermions with momenta near the hole pocket at (0, 0) and
f fermions with momenta near the electron pockets cen-
tered at (0, π) and (π, 0) in the 1-Fe Brillouin zone (Fig.
2a)48,50. The c and f fermions form circular and elliptical

FSs, respectively, with dispersions given by ξck = µc− k2

2mc

and ξf
k

= −µf +
k2

x

2mx
+

k2

y

2my
. Since the SDW state picks

an ordering vector Q, which is either (0, π) or (π, 0), one
of the electron pockets does not participate in this order.
We choose Q = (0, π) without loss of generality and effec-
tively reduce the model to two bands. We follow earlier
works51,52 and consider five possible repulsive interac-
tions in the band basis: inter-pocket, density-density, ex-
change, pair hopping, and intra-pocket interactions. The
corresponding couplings are U1, U2, U3, and U4 = U5, re-
spectively. We present the interaction Hamiltonian in
the Supplementary material (SM). All couplings are as-

(a) (b)

Figure 2: Fermi surfaces in (a) the paramagnetic state, (b)
the SDW state.

sumed to be already renormalized from their bare val-
ues by fermions with energies larger than the upper en-
ergy cutoff Λ. Without SDW, SC in this model arises
only in the s+− channel. The corresponding coupling
is U3 − U4, and we assume that it is positive (attrac-
tive). The couplings U1 and U2 do not participate in SC
pairing, but U1 contributes to the coupling in the SDW
channel U1 + U3 > 0, which for Ui > 0 is larger than
in SC channels. RG studies found that the SC interac-
tion gets larger as energy decreases in the RG flow51–54.
Yet, at low doping, the SDW order comes first and SC
develops in the coexistence region with magnetism.

We approximate the interactions Ui as angle inde-
pendent although in general they do contain symmetry-
imposed angular dependencies along the FSs, associated
with the orbital content of the FSs. These angular depen-
dencies give rise to angular variations of the s+− gaps in
the absence of SDW and in some cases lead to accidental
gap nodes, e.g., in P-doped materials6,55. In the coex-
istence regime, there is an additional angular variation
of the pairing interactions, imposed by the angle depen-
dence of the SDW coherence factors which dress the bare
interactions Ui

41,42,44,47. Because the orbital content and
the SDW coherence factors lead to similar angular depen-
dence of the pairing interactions, we treat the original
vertices as constants but keep the SDW-induced angular
dependencies. The momentum dependence of the origi-
nal interactions also leads to angular dependence of the
SDW gap which actually vanishes along particular direc-
tions, at least in a three-pocket model56. This angular
dependence is important at strong coupling, where it pre-
serves a small but finite FS, but not at moderate coupling
because even a constant SDW gap does not completely
gap the FS57.

The self-consistent equation for the SDW order param-
eter M and the reconstructed fermionic dispersions in the
SDW state have been obtained before48. The quadratic
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Hamiltonian in terms of the quasiparticles a and b is

H0 =
∑

k

[

ξaka
†
kαakα + ξbkb

†
kαbkα

]

, (1)

where ξa,b
k

= δk ∓
√

ξ2
k

+M2 and we have expressed
the original dispersions in terms of the linear combi-

nations δk =
ξf

k
+ξc

k

2
and ξk =

ξf

k
−ξc

k

2
. In general δk =

δ0 + δ2 cos 2θ, where the first term measures the doping

level (δ0 = 0.5vF (kcF − kfF )) and the second one accounts
for the (weak) ellipticity of the electron pocket (Ref.40).
The coherence factors uk and vk are expressed in terms

of these parameters as uk =

√

1
2

(

1 + ξk√
ξ2

k
+M2

)

, vk =

sgnM

√

1
2

(

1 − ξk√
ξ2

k
+M2

)

(see SM). The FSs for a and

b fermions are shown in Fig. 2b.
Superconductivity. Re-writing the pairing interactions

in terms of the new fermions, we find conventional pair-

ing terms like a†
k↑a

†
−k↓a−p↓ap↑ or a†

k↑a
†
−k↓b−p↓bp↑, and

anomalous terms like a†
k↑a

†
−k↓(a−p↓bp↑ + a−p↑bp↓). To

solve for the SC order parameter, we then need to in-
troduce both spin-singlet pairings iσyαβ〈akαa−kβ〉 and

iσyαβ〈bkαb−kβ〉 between fermions belonging to the same

pocket, and spin triplet pairing σxαβ〈akαb−kβ〉 between
fermions belonging to different pockets.

The full pairing Hamiltonian in the BCS approxima-
tion has the form

H∆ =
1

2
iσyαβ

∑

p

[

∆aa(p)a†
pαa

†
−pβ + ∆bb(p)b†

pαb
†
−pβ

]

+
1

2

∑

p

∆ab(p)σxαβ [a†
pαb

†
−pβ − b†

pαa
†
−pβ ] + H.c. (2)

Because there are three different anomalous terms, the
diagonalization of the pairing Hamiltonian leads to a set
of three coupled equations for ∆aa, ∆bb, and ∆ab. Pa-
rameterizing ∆ij as

∆aa,bb(p) = ±∆1 + ∆2(2upvp) + ∆3(u2
p − v2

p), (3)

∆ab(p) = ∆2(u2
p − v2

p) − ∆3(2upvp), (4)

we express the equations for SC order parameters as

∆1 =
U3 − U4

2

∑

k

[〈aa〉 − 〈bb〉] , (5)

∆2 = (U2 − U1)
∑

k

[

ukvk(〈aa〉 + 〈bb〉) + (u2
k − v2

k)〈ab〉
]

∆3 = −U3 + U4

2

∑

k

[

(u2
k − v2

k)(〈aa〉 + 〈bb〉) − 4ukvk〈ab〉
]

where 〈aa〉 ≡ iσyαβ〈a−kβakα〉, 〈bb〉 ≡ iσyαβ〈b−kβbkα〉,
〈ab〉 ≡ σxαβ〈b−kβakα〉. Each average is in turn expressed

in terms of ∆i (i = 1, 2, 3), i.e. Eqs. (5) represent the set

SDW

x

T
paramagnetic

+its

TN

Tc,1

Tc,2

s

SDW

x

T
paramagnetic

+ ts

TN

Tc,1

Tc,3

+ts

eiq

(a) (b)

T*

TRSB

Figure 3: Schematic phase diagram of a superconductor in
coexistence with SDW. (a) The special case when s and t
order parameters do not couple linearly (nested FSs). (b) The
generic case when s and t superconducting components couple
linearly (non-nested FSs). In the s + eiθt and s + it phases
(θ = π/2), the relative phase between the s and t components
is frozen at 0 < θ < π and TRS is broken, together with the
U(1) symmetry of the global phase. In the TRSB phase, only
TRS is broken. This phase is likely present in the generic case
but its boundaries are not known and we do not show it.

of three coupled non-linear equations for the SC order
parameters in the presence of SDW order.

We see from (5) that three combinations of the interac-
tions Ui appear in the pairing channel. Two have familiar
forms51: U3 − U4 and −(U3 + U4) are the couplings in
the s+− and s++ channels, respectively, in the absence
of SDW order. A non-zero M couples the s+− and s++

channels, but since the coupling in the s++ channel is
strongly repulsive, the SDW-induced mixing of s+− and
s++ channels should not lead to any new physics. The
third coupling U2 −U1, on the other hand, does not con-
tribute to SC in the absence of SDW order. Its presence
in Eq. (5) implies that SDW order not only modifies the
two existing pairing channels, but also generates a new
channel of fermionic pairing.

We present the full expressions for 〈ij〉k in the SM and
here focus on the linearized gap equations, valid at the
corresponding Tc,i. Expanding the r.h.s. of (5) to first
order in ∆ij we obtain

〈aa〉k ± 〈bb〉k =
∆aa(k)

2ξak
tanh

ξak
2T

± ∆bb(k)

2ξbk
tanh

ξbk
2T

〈ab〉k =
∆ab(k)

2(ξak + ξbk)

(

tanh
ξak
2T

+ tanh
ξbk
2T

)

(6)

where ∆ij are expressed via ∆i by Eq. (4). Substituting
(6) into the r.h.s. of (5) we obtain the set of three coupled
linearized Eqs. on ∆i which can be easily solved.

To understand the physics, we first focus on the case
of “maximally-nested” FSs, where δ0 = 0 but δ2 6= 0,
i.e. ξbk becomes −ξak under a rotation by 90 degrees. We
found that this symmetry decouples the three linearized
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gap equations for ∆i, which become

∆1

[

1 − U3 − U4

2
NF

ˆ

Xk

]

= 0 (7)

∆2

[

1 − (U2 − U1)NF

ˆ

(

u2
kv

2
kXk + (u2

k − v2
k)2Yk

)

]

= 0

∆3

[

1 +
U3 + U4

2
NF

ˆ

(

(u2
k − v2

k)2Xk + 8u2
kv

2
kYk

)

]

= 0

where NF is the density of states at the FS,
´

=
´

dξ dϕ
2π ,

ukvk = M/(2
√

M2 + ξ2
k
), u2

k − v2
k = ξk/

√

M2 + ξ2
k
, and

Xk =
tanh

ξa
k

2Tc

ξa
k

, Yk =
tanh

ξa
k

2Tc
+ tanh

ξb
k

2Tc

2(ξa
k

+ ξb
k
)

(8)

The first and the last Eqs. (7) have familiar forms for
s+− and s++ superconductivity. For positive Ui, the s++

channel is repulsive, but s+− superconductivity develops
at T = Tc,1 if U3 − U4 is positive. The momentum inte-
gral
´

Xk is logarithmically singular, as expected in BCS
theory, hence Tc,1 is non-zero already at weak coupling.
The second Eq. in (7) is the gap equation in the new
pairing channel. In the presence of SDW the kernel in
this channel is also logarithmically singular due to the
contribution from 〈aa〉k + 〈bb〉k. Hence, if U2 −U1 is pos-
itive, the t−channel becomes unstable towards pairing at
a non-zero Tc,2. Once ∆2 becomes non-zero, it induces a
non-zero inter-pocket pairing component 〈ab〉k.
s + it state with broken time-reversal symmetry As

it is customary for competing SC orders, the order which
develops first tends to suppress the competitor by provid-
ing negative feedback to the gap equation for the compet-
ing order20. Yet, if the repulsion between the competing
SC orders is not too strong, the two orders coexist at low
enough temperatures. The issue then is what is the rel-
ative phase between the two U(1) order parameters ∆1

and ∆2. To address this issue we derived by standard
means50,58 the GL Free energy, F(∆1,∆2) (see SM). To
fourth order in ∆1,2 we obtained

F(∆1,∆2) = α1|∆1|2 + α2|∆2|2 + β1|∆1|4 + β2|∆2|4

+ 2γ1|∆1|2|∆2|2 + γ2

(

∆2
1(∆∗

2)2 + (∆∗
1)2∆2

2

)

(9)

where β1 and β2 are positive. The two orders coexist
when β1β2 > (γ1 − |γ2|)2. This condition can be satis-
fied in the presence of disorder59,60. The relative phase
θ between ∆1 = |∆1|eiψ+θ/2 and ∆2 = |∆2|eiψ−θ/2 is
determined by the sign of the γ2 term in (9). We found
that γ2 is positive:

γ2 =
∑

k

(2ukvk)2

[

1

|ξa
k
|3 +

1

|ξb
k
|3

]

. (10)

Minimization of Eq. (9) then shows that θ = ±π/2.
Because θ = π/2 and θ = −π/2 are different states,
the system spontaneously breaks the Z2 TRS 61. In the

TRS-broken state, the phases of the order parameters
〈aa〉k and 〈bb〉k are ϕ and π − ϕ, where 0 < ϕ < π/2.
The third gap, which is generally required to satisfy the
set of complex gap equations in the TRS-broken state
is provided by 〈ab〉k, whose phase in this situation is
−π/2. We show the gap structure schematically in Fig.
1 where we associated 〈ij〉k with vectors, whose direc-
tions are set by the phases. We also performed Hubbard-
Stratonovich analysis beyond mean-field level50, by al-
lowing the phases of ∆1,2 to fluctuate, and found (see
SM) that when Tc,2 ≈ Tc,1 ≡ Tc, the system breaks TRS
and sets the relative phase θ = ±π/2 at a temperature
T ∗ > Tc. In between T ∗ and Tc, TRS is broken, but
the U(1) symmetry associated with the global phase of
∆1 and ∆2 remains intact. Such a state is typical for
systems whose order parameter manifold contains both
continuous and discrete symmetries 2,23,62,63. At Tc, the
global phase is broken and both SC orders develop simul-
taneously. A schematic phase diagram is shown in Fig.
3a.

s+ eiθt state So far we considered the “maximally-
nested” case, with δ0 = 0. For the more generic case
δ0 6= 0 we find that the GL functional (9) contains a bi-
linear coupling between the two SC states, i.e. a term
α3 (∆1∆∗

2 + ∆∗
1∆2) with α3 < 0 (details in the SM). In

this situation, the onset of the s+− state at Tc,1 neces-
sarily triggers the emergence of a t state. The relative
phase between the two order parameters at T ≤ Tc,1 is
θ = 0, i.e., the state is s+t. Yet, the SC state still breaks
TRS at a lower temperature Tc,3 < Tc,1. Indeed, compar-
ing the α3 (∆1∆∗

2 + ∆∗
1∆2) and γ2

(

∆2
1(∆∗

2)2 + (∆∗
1)2∆2

2

)

terms in the GL functional we immediately see that θ = 0
only as long as ∆1∆2 < α3/4γ2. Once the temperature
is reduced and ∆1,2 grow, this condition breaks down
at T = Tc,3, and at lower T the minimum of the GL
functional shifts to θ 6= 0. At a lower T , the SC state
becomes s + eiθt and TRS gets broken (see Fig. 3b).
This GL analysis attests the generality of our results.
In particular, the momentum dependence of the interac-
tions, introduced by the orbital content of the FS (which
we neglected), would only change the GL parameters,
but not the GL form and hence would not invalidate our
conclusion that an s+ eiθt state emerges at low T .

Conclusions In this paper we argued that a SC state,
which explicitly breaks TRS, appears when SC emerges
from a pre-existing SDW-ordered state. We found that
in the presence of SDW, the spin-triplet channel with
inter-pocket pairing couples to spin-singlet intra-pocket
pairings on the reconstructed FSs. This leads to the
emergence of a new pairing channel, which we labeled as
t−pairing to emphasize that it involves spin-triplet. We
analyzed the interplay between s+− and t− SC orders
and showed that they coexist at low T with a relative
phase 0 < θ < π. As a result, the phases of the gaps on
different FSs differ by less than a multiple of π. Such a
state breaks time-reversal symmetry and has been long
sought in the studies of FeSCs. We argued that in a
generic case TRS gets broken in the SC manifold at tem-
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peratures lower than Tc. This should give rise to features
in experimentally probed thermodynamic quantities.

We thank P. Hirschfeld, I. Eremin, and O. Vafek for
fruitful discussions. AVC and AH are supported by the
DOE grant DE-FG02-ER46900.
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