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The classical Kepler problem, as well as its quantum mechanical version, the Hydrogen atom,
enjoy a well-known hidden symmetry, the conservation of the Laplace-Runge-Lenz vector, which
makes these problems superintegrable. Is there a relativistic quantum field theory extension that
preserves this symmetry? In this Letter we show that the answer is positive: in the non-relativistic
limit, we identify the dual conformal symmetry of planar N' = 4 super Yang-Mills with the well-
known symmetries of the Hydrogen atom. We point out that the dual conformal symmetry offers a
novel way to compute the spectrum of bound states of massive W bosons in the theory. We perform
nontrivial tests of this setup at weak and strong coupling, and comment on the possible extension

to arbitrary values of the coupling.
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The classical two-body (or Kepler) problem, with
Hamiltonian
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is well-known to possess a non-obvious conserved vec-
tor which makes it superintegrable. This Laplace-Runge-
Lenz vector is expressed as

—

B N

A—2(p><L LX‘D) M47r|a:|’ 2)
where L = @ x 7 is the angular momentum. Physically,
its conservation accounts for the fact that the orbits of
the 1/|x| central potential form closed ellipses which do
not precess with time.

The same Hamiltonian is relevant for the quantum me-
chanical description of the Hydrogen atom, with & and
P’ replaced by operators. As was pointed out early on by
Pauli, the Laplace-Runge-Lenz vector in the above form
is also conserved quantum mechanically, i.e. it commutes
with the Hamiltonian. The symmetry group is enlarged
from SO(3) rotations to SO(4). This gives rise to a sim-
ple algebraic way of calculating the spectrum, which au-
tomatically accounts for its degeneracies [1].

In real Hydrogen atoms, both this symmetry and its as-
sociated degeneracies are approximate due to relativistic
effects whose size are of order m.a?, where « is the fine-
structure constant and m, the electron mass. Is there
a relativistic quantum field theory which has an exact
symmetry generalizing the conservation of the Laplace-
Runge-Lenz vector? In this Letter we will show that
such a system exists and use the additional symmetry to
facilitate the calculation of its spectrum.

To understand how to formulate the symmetry (2) rel-
ativistically it will be helpful to recall the classic work by

Wick and Cutkosky [2]. These authors studied the rela-
tivistic Bethe-Salpeter equation for a bound-state wave-
function 1,
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where (ys—y1)* = P* is the total four-momentum of the
bound state and (¢—y;)* and (y3—q)* are the momenta
of its two constituents. This is a natural relativistic gen-
eralization of the Schrédinger equation, and arises as the
approximation to electron-proton scattering where one
retains only all planar ladder diagrams and treats the
photon as a spin-0 particle.

Wick and Cutkosky noticed that the equation is invari-
ant under a larger symmetry than the expected SO(3)
rotations. In modern language, their findings may be
summarized by the statement that eq. (3) is covariant
under the transformations

Sept = 2(&p)pt — p*E*, Sh(p) = —2(Ep) Y(p),
Seyl' = 2(Eya)yt — (v +mi)&r, dmy = 2(Eyi)m; .

These transformations have a simple interpretation as
conformal transformations of the momentum space of the
theory. Following recent literature, we will refer to them
as dual conformal transformations. Noticing that eq. (3)
is also invariant under translations of (p, y;) as well as un-
der Lorentz transformations, one may see that the equa-
tion is covariant under a full SO(4, 2) group.

The transformations (4) can be used to relate solutions
which correspond to different masses. In fact, they imply
that the dynamics depends only on the combination [2]
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This provides a generalization of the concept of reduced
mass to this particular relativistic setup. The remain-
ing nontrivial predictions of the SO(4,2) symmetry arise
from the subgroup which preserves the masses and y;.

This subgroup is 6-dimensional, since SO(4,2) is 15-
dimensional and 10 constraints are imposed, but only 9
are independent. Explicitly, in a rest frame where y; =0
and y5 = (P°,0), and setting m; = ms = m = 2y with-
out loss of generality, we find that the nontrivial genera-
tors are the following combinations of (4), Lorentz boosts,
and translations:
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with a similar transformation for p. By construction, the
points (y;, m;) are invariant under this symmetry.

These transformations can be interpreted more easily
by taking the non-relativistic limit of the model. It is
well known that eq. (3) reduces to the Schrodinger equa-
tion in this limit, a fact which can be demonstrated by
approximating the frequency integration by its residue
on the 1/(¢? +m?) propagator. Substituting the value of
q° on the residue, ¢° ~ m +§2/(2m), the transformation
(6) is reduced to

0pd = € [m(P° —2m) + ¢°] + 2847 ()

It is easy to see that this is the canonical transformation
generated by the Laplace-Runge-Lenz vector (2) [20].
This demonstrates that the symmetries (6), which arose
from SO(4,2) conformal transformations in momentum
space, are nothing but a relativistic generalization of the
Laplace-Runge-Lenz vector. For more on the interpreta-
tion of the latter we refer to [3].

Unfortunately, the Wick-Cutkosky model does not de-
fine a consistent relativistic theory, as the ladder approx-
imation is not unitary and lacks multi-particle effects.
Remarkably, a consistent quantum field theory general-
izing the above symmetry does exist. It has been ob-
served that maximally supersymmetric Yang-Mills the-
ory N' = 4 SYM with gauge group SU(N.), which has
a superconformal symmetry, also has a dual momentum
space version of this symmetry, in the planar limit [4].
(The planar limit, which we are going to work in, is de-
fined by N, — oo, with the ‘t Hooft coupling A\ = ¢>N,
held fixed.) As far as we are aware this is the only known
example of a four-dimensional quantum field theory with
such a symmetry.

In the usual formulation this is a theory of massless
particles. However, massive particles can be introduced
in a natural way via the Higgs mechanism. This al-
lows us to discuss the scattering of massive W bosons.
Their masses can be freely adjusted by varying scalar
field expectation values. Let us focus on the four-particle
scattering amplitude depicted in Fig. 1. This ampli-
tude is finite in the ultraviolet, due to the finiteness
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FIG. 1: Four-point amplitude in N' = 4 SYM with non-trivial
scalar vacuum expectation values. Thick lines correspond to
massive W bosons, while dashed lines correspond to massless
particles.

of N = 4 SYM, as well as in the infrared, thanks to
the particle masses. Dual conformal symmetry implies
that the dependence on the kinematical invariants and

masses is as follows, for the symmetry breaking pattern
SU(N.) = SU(N. —4) x U(1)* [5]:

A4(s,t,m1,m2,mg,m4) = A;clree X M(“’?U) ’ (8)
where, as a generalization of eq. (5),
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In the remainder of this Letter we wish to discuss impli-
cations of the structure (8), which as we have seen is inti-
mately tied to the Laplace-Runge-Lenz vector, regarding
the spectrum of the theory.

As depicted in Fig. 1, the W bosons interact by ex-
changing massless gauge fields from the unbroken part
of the gauge group. One can readily see that the inter-
action is attractive, so they will form bound states. At
weak coupling these are similar to Hydrogen states. Asin
the Wick-Cutkosky model we may use eq. (9) to restrict
to the case my = m3 = m.

The exact dual conformal symmetry ensures that the
spectrum organizes into complete SO(4) multiplets, non-
perturbatively at any coupling A. The total degeneracy
at principal quantum number n, including supersymme-
try, is 256n2. To extract the spectrum from the am-
plitude we will benefit from relativity by making use of
Regge theory [6]. The latter instructs us to group the
highest-spin state at each energy F, into a trajectory
j(s), where j is the spin:

j(sp)+1=n when s, =FE? (n=1,2,...). (10)

The analytic continuation of the function j(s) then de-
termines the behavior of the amplitude in the ultra-
relativistic limit ¢ — oo with s < 0 fixed, through
M ~ t3()+1 (Provided only that j(s) remains the lead-
ing trajectory in that region.) Conversely, if one knows
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FIG. 2: Different limits of the four-point amplitude that are
equivalent thanks to dual conformal symmetry. The double
lines denote Wilson lines.

j(s) by some means, eq. (10) can be used to determine
the spectrum.

A traditional way to calculate Regge trajectories per-
turbatively is to sum logarithmically enhanced graphs.
For example at the leading-logarithmic accuracy the lad-
der integrals shown in Fig. 2 dominate and exponentiate
in a simple way. The exponent, the gluon Regge trajec-
tory j(s), is given by a two-dimensional bubble integral.
In principle this calculation could be carried out to sub-
leading orders as well, see e.g. [8, 9].

The relativistic Laplace-Runge-Lenz symmetry offers a
novel, and easier, way to calculate the Regge trajectory
j(s). Through eq. (9), we see that the limit ¢ — oo of the
amplitude, with all other variables held fixed, is equiva-
lent to the limit my — 0. In this limit the amplitude is
known to become infrared-divergent and its leading terms
are governed by the anomalous dimension I, of a Wil-
son loop with a cusp [7], M ~ (mg4)ew=r(9) Equating the
exponents in the two asymptotic limits using eq. (9), we
thus find that

*Fcusp (d))

This relation has been derived and used previously in
refs. [8, 9], to which we refer the reader for more details.
A similar relation is known to give the infrared-divergent
part of the gluon trajectory as m? — 0 [10], but we stress
that in planar A" = 4 SYM eq. (11) holds for the complete
function of s/m?.

We wish to combine this relation with eq. (10) as a
means to obtain the spectrum of Hydrogen-like bound
states in this theory. At the lowest order the cusp anoma-
lous dimension is readily calculated by a one-loop graph
that corresponds to one rung in the Wilson line integral
of Fig. 2 [21],
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To obtain the spectrum we need to solve eq. (10), or,
equivalently, I'cysp(¢n) = —n. From eq. (12) we see that,
since A is small, the solution can only occur for ¢ close
to 7. In this region we have

+0(\?). (12)

(13)

so that 0, =~ A/(4wn). Converting to an energy using
egs. (10) and (11) we thus find
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This is the well-known Hydrogen-like spectrum associ-
ated with eq. (1), as expected, giving a first confirmation
of the method.

Because the present Hydrogen-like system is embed-
ded in a relativistic quantum field theory we expect the
spectrum to be sensitive to a rich set of multi-particle ef-
fects. For example, one expects large logarithms to arise
from so-called ultrasoft virtual particles, in analogy with
the computation of the Lamb shift in QED. These are
modes which are infrared compared to the atomic radius
but not compared to the binding energies. In fact, as we
will see, closely related effects do appear in the computa-
tion of I'gysp at the next order, which make a nontrivial
resummation necessary.

To carry out this resummation systematically we bor-
row methods used in the study of the heavy quark static
potential in QCD [12]. But first we will need to use con-
formal symmetry one more time, now in the coordinate
space of the theory. Through radial quantization, confor-
mal symmetry equates the anomalous dimension I'cysp (¢)
to the energy of a pair of static heavy quarks on S? x R,
where the “time” r € R is the radial distance from the
cusp, and 9 is the distance between the two quarks on the
sphere [9, 13]. Combined with the duality (11) we thus
have a relation between dynamical quarks in flat space,
and static quarks in the curved space S? x R. Such rela-
tions (in flat space) are generic in the large mass limit,
but we wish to stress that here we are not taking such a
limit and we are discussing the full, relativistic system.
The mapping to the cylinder S® x R helps apply standard
methods because one is now computing a static potential.

In the regime 6 ~ A relevant to the bound states, there
are two important length scales on the cylinder: the small
size of the pair and the (unit) radius of the sphere, the lat-
ter being comparable to the singlet-adjoint energy split-
ting A/(47d). This second fact signals the need for a
resummation of perturbation theory. This was carried
out to the next-to-leading order in ref. [9], whose results
we borrow:
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Here €, is a small ultraviolet regulator, which cancels
against a divergence of the integral. In fact we were able
to perform the latter analytically. Upon equating the
left-hand-side to minus an integer we obtain the following



correction to eq. (14):

—\3m A 1
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(En—Qm) |)\3 =
for n = 1,2,3,..., and where Si(n) = 22:1% is the
harmonic number.

Let us discuss this equation. First, we note that the
size of the correction is uniformly bounded as a function
of n, and therefore for small A it is always smaller than
the leading term given in eq. (14). This demonstrates
that the perturbative expansion is under control.

Second, we notice the non-analytic dependence on the
coupling through the log A term. This originates from
the ultrasoft modes alluded to earlier, and is conceptually
similar to the (m.a® log ) contribution to the Lamb shift
in QED. It appears earlier by two powers of the coupling
in the present model because ultrasoft scalar exchanges
are not dipole-suppressed.

Third, the square bracket becomes constant at large n.
Its value is in perfect agreement with replacing the cou-
pling A in eq. (14) with the (flat space) static potential,
A=A+ % (log £ + & — 1) + O(A3) [12], as it should.

Finally, we wish to mention that we have verified
eq. (16) against a direct next-to-leading order calculation
of the spectrum using conventional methods [14]. This
confirms, in a nontrivial way, that the method based on
eqs. (10)-(11) provides the correct spectrum.

The duality (11) can also be verified at strong cou-
pling. The cusp anomalous dimension was obtained in
semi-analytic form in ref. [15] while the spectrum was
obtained in ref. [16] by solving numerically a differen-
tial equation [22], both using the AdS/CFT correspon-
dence. The two formulations appear very different and
we were not able to find an analytic match between them.
Nonetheless, when we evaluated numerically the two for-
mulas throughout the range 0 < E < 2m, (corresponding
to 0 < ¢ < 7), we found perfect agreement within nu-
merical accuracy.

In Fig. 3 we show the next-to-leading order trajectory
at weak-coupling [23] as well as the strong coupling for-
mula taken from either one of refs. [15, 16]. The spectrum
is obtained from the curves by solving j,(s,) = n—1,
see eq. (10). With increasing coupling the ground state
becomes more tightly bound, as expected. The reader
should not attribute a deep meaning to the agreement
of the two curves at A = 10 and large spin; this is sim-
ply due to the fact that the weak and strong coupling
extrapolations of the flat space static potential turn out
to cross roughly at this value. The difference in shape
between the two curves offers one measure of the current
uncertainties at intermediate coupling. At small s the
slope is exactly known [17].

As a final application, the Laplace-Runge-Lenz sym-
metry allows to extend the conventional SO(3) partial
wave decomposition of the four-particle amplitude so as
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FIG. 3: Regge trajectories of Hydrogen-like states in N = 4
SYM theory for A = 5,10, 10, 30,100 (bottom to top). The
solid-blue lines use the weak-coupling formulas while the
dashed-red lines use the large-A formulas (see text). The
bound states (crosses) are obtained by equating j to an inte-
ger. The inset shows the same curves with the total energy
in units of mass on the horizontal axis.

to account for the contribution of full SO(4) multiplets,
reducing the complexity of the expansion. By analyzing
the three-loop results from ref. [18] in this way we found
evidence that the first subleading power correction in the
high-energy limit is controlled by a single Regge pole, or,
equivalently via eq. (11), a single operator of dimension

T1(¢) =1+ \/(472) + O(N\?). (17)

Details of the analysis and the full three-loop trajectory
will be reported elsewhere [14]. This simplicity hints at
further structure in the dynamics of this model, which
does not directly follow from the Laplace-Runge-Lenz
symmetry but which the latter may help uncover.

To conclude we mention that the cusp anomalous di-
mension in A/ = 4 SYM has been recently reformulated
in terms of a system of integral equations which embody
the integrability of this theory [19]. Combined with the
present results this could lead to an exact determina-
tion of the spectrum at finite coupling in this interacting
quantum field theory.
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