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We construct a model of inflation based on a low-energy effective theory of spontaneously broken
global scale invariance. This provides a shift symmetry that protects the inflaton potential from
quantum corrections. Since the underlying scale invariance is non-compact, arbitrarily large inflaton
field displacements are readily allowed in the low-energy effective theory. A weak breaking of scale
invariance by almost marginal operators provides a non-trivial inflaton minimum, which sets and
stabilizes the final low-energy value of the Planck scale. The underlying scale invariance ensures
that the slow-roll approximation remains valid over large inflaton displacements, and yields a scale
invariant spectrum of perturbations as required by the CMB observations.

PACS numbers:

Inflation is the leading contender for the explanation
of why the Universe is so big, old, and smooth [1–3]. It
also predicts the initial spectrum of almost scale invari-
ant density fluctuations [4]. These inflationary fluctu-
ations excellently fit the cosmic microwave background
(CMB) measurements by WMAP and Planck. Very re-
cently the BICEP2 experiment claimed an observation
of CMB polarization [5], which fit the spectrum of pri-
mordial gravity waves [6] that can also be created dur-
ing inflation. The BICEP2 results, if due to primordial
gravity waves, point towards large field models of infla-
tion, to explain the claimed large tensor-to-scalar ratio.
Such models involve large field changes ∆ϕ > MPl dur-
ing inflation, and need a very flat and small potential in
Planck units [3]. They are difficult to realize because at
large field values the quantum corrections can be large.
However, setups using a pseudo-Goldstone boson of some
weakly broken symmetry as the inflaton [7, 8], have an
approximate shift symmetry which protects the potential
from large corrections [9–11]. The inflaton’s shift symme-
try is a ‘phase rotation’, and the inflaton is necessarily a
pseudo-scalar (essentially a type of axion). Here we argue
that an alternative is to use a scalar Goldstone boson for
a non-compact, spontaneously broken global scale sym-
metry, the dilaton, as the inflaton. This automatically
accommodates large field variations since the symmetry
and the vacuum manifold are non-compact. Scale invari-
ance forbids a direct Einstein-Hilbert term in the action,
so the leading operator controlling graviton dynamics is
a dilaton-graviton coupling Φ2R. The Planck scale arises
from the dilaton VEV 〈Φ〉 ∼MPl. A fully scale invariant
theory allows only a quartic dilaton self coupling, without
a non-trivial minimum, protected from loop corrections
by an effective shift symmetry which arises from the un-
derlying scale symmetry. An inclusion of small explicit
breaking terms yields a non-trivial dilaton VEV at large
but finite values O(MPl) with a very flat potential. All
corrections to the inflaton potential will be suppressed
by the small parameters characterizing the sizes of the
explicit breaking terms.

Our main assumption is that the low-energy effective
Lagrangian is approximately scale invariant. Global scale
transformations are given by xµ → x̄µ = e−λxµ, or equiv-
alently gµν → e−2λgµν . These have the effect R→ e2λR
on the scalar curvature, while generic operators trans-
form as O → eλ∆O, where ∆ is the scaling dimension
of O. The spontaneous breaking of scale invariance is
parameterized by the dilaton field Φ, which is the Gold-
stone boson for broken scale invariance, and which is the
inflaton in our setup. Once the dilaton is stabilized by
the small explicit breaking terms, its VEV will give rise
to the effective Planck scale. We will assume that ini-
tially the dilaton is displaced far from its minimum, and
that its rolling to its minimum drives inflation.

The general scale invariant Lagrangian that we will be
considering is given by

L =
√
−g
[
ξ̃Φ2R− 1

2
(∇Φ)2 − V (Φ)

]
+ ∆L(gµν ,Φ)

+ LM (gµν ,Φ,Ψ) . (1)

where R is the Ricci scalar and ξ̃ is a dimensionless pa-
rameter. Note, that scale invariance forbids the pres-
ence of the usual Einstein-Hilbert term. The potential
V (Φ) will be specified below, but exact scale invariance
would require V (Φ) = α2Φ4, with a constant α. Scale
invariance forbids large corrections to the dilaton poten-
tial, hence eliminating the η-problem. This remains valid
even after including the loop corrections from the inter-
actions with other fields, as long as these fields do not
violate scale invariance explicitly. This will be the case
if the masses of the fields interacting with the dilaton
originate from the dilaton VEV itself, in which case the
resulting corrections will just renormalize the coefficient
of the Φ4 coupling. In order to recover Einstein grav-
ity, the potential must give rise to a non-vanishing VEV
for Φ, 〈Φ〉2 = M2

Pl/2ξ̃. This requires the presence of
small explicit breaking terms, whose corrections to the
dilaton potential will nevertheless be suppressed by the
small parameter characterizing the magnitude of the ex-
plicit breaking. This follows since the theory - includ-
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ing the regulator - has a manifest (non-linearly realized)
shift symmetry, which arises from scale invariance after
field redefinitions. This also guarantees that all the per-
turbative graviton loop corrections are completely under
control, much like in the case of axion monodromy [11]
(see also [12]). ∆L(gµν ,Φ) contains operators with ex-
tra derivatives and inverse powers of Φ, for example the
Weyl term involving R2 would be in this part of the La-
grangian. LM (gµν ,Φ,Ψ) contains any other dynamics
involving fields collectively denoted by Ψ (such as the
Standard Model (SM) fields), which may or may not be
coupled to Φ (but they certainly couple to the metric in
order to preserve Lorentz invariance). We will discuss
the role of these two terms later.

In order to understand the inflationary dynamics of
this system, it is convenient to perform a Weyl trans-
formation of the metric and go to the Einstein frame
gµν → Ω2gµν , where Ω = Ω(x) satisfies Ω2ξ̃Φ2 = M2

P /2.
The rescaled Lagrangian is given by

L =
√
−g
[
M2
Pl

2
R− 1

2
(∇ϕ)2 − V (ϕ)

]
+

∆L
(
Ω2(ϕ)gµν ,Φ(ϕ)

)
+ LM

(
Ω2(ϕ)gµν ,Φ(ϕ),Ψ

)
(2)

where V (ϕ) =
M4

Pl

4ξ̃2
V(Φ(ϕ))
Φ4(ϕ) . The relation between the

original dilaton and the Einstein frame inflaton ϕ is given
by (with boundary condition Φ(ϕ = 0) = 〈Φ〉)

Φ(ϕ) = 〈Φ〉 exp

(√
ξϕ

MPl

)
,

1

ξ
=

1

2ξ̃
+ 6 . (3)

In this frame the original scale invariance of the theory
will manifest itself in a shift symmetry for the inflaton

ϕ→ ϕ̄ = ϕ+
MPl√
ξ
λ . (4)

Thus Eq. (2) can be thought of as the non-linearly re-
alized Lagrangian for the spontaneously broken non-
compact group of scale transformations, where the above
shift symmetry is the remnant of the original scale in-
variance. The Einstein-Hilbert term is shift symmetric,
since it does not contain ϕ. The kinetic term for the
scalar is shift symmetric because it contains only deriva-
tives. The scalar potential term V (ϕ) becomes a constant
(if we started out with a quartic Φ4 in the Jordan frame,
as required in the absence of explicit breaking terms).
The terms in ∆L already contain derivatives of ϕ only,
and thus will be obviously shift invariant. The only non-
trivial terms are those that involve matter fields coupled
to ϕ in LM : here explicit powers of e

√
ξϕ/MPl will appear

from the Weyl transformation of the metric, seemingly
giving rise to non-derivative interactions. The important
point is that such factors will also be present in the ki-
netic terms of the matter fields: once the matter fields
are suitably redefined in order to canonically normalize
their kinetic terms, the inflaton will again appear only

derivatively coupled, obeying the shift symmetry. Hence
all the terms in Eq. (2) which were originally exactly scale
invariant remain invariant under the shift symmetry.

Notice also that, given ϕ = (MPl/
√
ξ) log(Φ/〈Φ〉), if

the dilaton field starts out at small values Φ0 ∼ 0 far from
the minimum of the potential and moves out to 〈Φ〉 ∼
MPl, the field space range for ϕ can be larger than MPl

without ever leaving the regime of validity of the effective
theory. For example assuming Φ0 ∼ 10−15〈Φ〉 ∼ TeV,
we find |∆ϕ| ∼ 15MPl, a seemingly super-Planckian field
excursion in the Einstein frame.

The scale invariant α2Φ4 dilaton potential yields a
completely flat constant potential independent of ϕ in
the Einstein frame. This is again a consequence of the
shift symmetry Eq. (4). However for a completely flat
potential the VEV 〈Φ〉 (and the Planck scale) remain
undetermined. One needs to systematically incorporate
small explicit breaking terms into the Lagrangian which
can fix the dilaton VEV at large values. Such explicit
breaking terms could possibly originate from the inter-
actions with additional matter contained in LM , in par-
ticular they could potentially be due to interactions with
the SM fields. As long as the explicit breaking induced
by these terms is weak, the shift symmetry Eq. (4) will
remain approximately valid, and will continue to protect
the low energy theory Eq. (2) from large corrections. We
now consider several simple but well-motivated forms of
potentials that systematically incorporate small explicit
breakings of scale invariance, with a vanishing cosmolog-
ical constant at the minimum (notice that scale invari-
ance does not in itself say anything about the cosmolog-
ical constant [13]). More examples which yield arbitrary
power-law inflaton potentials protected by approximate
shift symmetry are discussed in [14].

The first example takes the effect of a single marginally
relevant operator with dimension 4−ε into account. This
type of potential [15, 16] naturally shows up in warped
extra dimensions [17] after modulus stabilization via the
Goldberger-Wise mechanism [18, 19] (which indeed cor-
responds to turning on a marginally relevant operator in
the dual conformal field theory language). The resulting
approximately scale invariant potential is

V (Φ) = Φ4
(
α+ βΦ−ε

)2
, (5)

where ε corresponds to the anomalous dimension of the
operator breaking scale invariance, ε� 1. This potential

is minimized at 〈Φ〉 = (−α/β)
1/ε

, where it vanishes to
reproduce an (approximately) zero vacuum energy den-
sity at the end of inflation. The inflaton potential in the
Einstein frame reads

V (ϕ) =
M4
Pl

4

α2

ξ̃2

(
1− e−ε

√
ξϕ/MPl

)2

. (6)

This is a very flat potential, as long as ε � 1: a result
of the small explicit breaking of scale invariance. Note
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that the form of the potential Eq. (6) is the same as that
of the Starobinsky model [20], with the important differ-
ence that the exponent here is controlled by the amount
of explicit breaking in the field theory. In contrast, in
the original Starobinsky model the exponent is fixed by
4D general covariance. To understand why the Starobin-
sky potential is a special case of Eq. (6), however, all one
needs is scaling symmetry. The starting action of [20] can
be thought of as a special case of scale invariant theory
where the breaking of scale invariance is induced purely
gravitationally, by an explicit M2

PlR term. This immedi-
ately explains the necessity that in Starobinsky inflation,
the R2 term must dominate over M2

PlR to yield inflation:
the scale symmetry breaking term must be subleading in
the UV for the protection mechanism to be operational.
This is also the reason behind the emergence of the same
type of potentials in the context of induced gravity, as
explained in [21].

The slow-roll parameters and the number of e-folds of
inflation are given in this model by

εV =
2ε2ξ

(1− eε
√
ξϕ/MPl)2

, ηV = εV

(
2− eε

√
ξϕ/MPl

)
,

N ' 1

2ε2ξ

[(
eε
√
ξϕ0/MPl − 1

)
− ϕ0√

2MPl

]
. (7)

The above expressions depend only on the combination
ε
√
ξ, which is the single parameter needed to character-

ize this model. Now we can compute the scalar power
spectrum Ps, the tensor-to-scalar ratio r ' 16εV , and
the tilt of the primordial scalar perturbations ns '
1 + 2ηV − 6εV , at CMB horizon exit with Ncmb ' 60.
We show in Fig. 1 the values of ns and r while vary-
ing ε

√
ξ ∈ [−0.5, 0.5], for ϕ0 < 〈ϕ〉 = 0, correspond-

ing to almost marginal perturbations. The same re-
sults are obtained for ϕ0 > 〈ϕ〉 = 0, but with oppo-
site signs for ε. The points shown correspond to ε

√
ξ =

−0.001,−0.01,−0.05, 0.001, 0.01, 0.1, 0, 5, and
√

2/3 cor-
responding to the Starobinsky model. If we insist on
solutions with ϕ0 < 〈ϕ〉, we can see that this model
can accommodate both very small values of r (for rel-
atively large anomalous dimensions ε

√
ξ ∼ O(0.1), that

is marginally relevant perturbations), while r can be
pushed into the region favored by BICEP2 for ε

√
ξ <

0, corresponding to marginally irrelevant perturbations.
Similar observations were noted in specific constructions
in [22]. The COBE normalization (Ps)exp ∼ 10−9 en-
forces a constraint on the parameter α in the potential,
for fixed ε and ξ̃. Explicitly one obtains

Ps =
α2

24π2ξ̃2

sinh4(ε
√
ξϕcmb/2MPl)

ε2ξ
, (8)

where ϕcmb is a function of ε
√
ξ. Since Ps increases with

ε
√
ξ, smaller values of the explicit breaking parameter

ε — and therefore better slow-roll approximation — ac-
commodate the observed power spectrum more easily, as
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FIG. 1: Values of ns and r for ε
√
ξ ∈ [−0.5, 0.5], for ϕ0 <

〈ϕ〉 = 0. The same results are obtained for ϕ0 > 〈ϕ〉 = 0, but
with opposite signs for ε. The points shown correspond to
ε
√
ξ = −0.001,−0.01,−0.05, 0.001, 0.01, 0.1, 0, 5, and

√
2/3

in green for the Starobinsky model. The red and blue con-
tours show the 68% and 95% confidence regions by Planck
and BICEP2 respectively.

expected from general inflationary phenomenology. From
the minimum of Eq. (5) one naturally expects that ε is
of the order of 1/ ln(MPl/Λε), where Λε parametrizes
the onset of scaling symmetry breaking. For instance
Λε ∼ 10±3MPl yields ε ∼ 0.1, while Λε ∼ 10±17MPl

gives ε ∼ 0.01. Using ε
√
ξ = ±0.01 and for the most

favorable case of ξ̃ ' 16π2 (notice that Ps decreases with
increasing ξ̃), the scalar power spectrum is

Ps '
( α

0.1

)2

× 10−9 , (9)

which requires a perturbative value of α compared to its
NDA estimate α ∼ 4π.

Another simple potential could arise in the presence
of a marginally relevant and a marginally irrelevant per-
turbation. For simplicity we take their dimensions to be
4± ε, though they could be independent. So,

V (Φ) = −α2Φ4 + β2Φ4−ε + γ2Φ4+ε , (10)

while in the Einstein frame

V (ϕ) =
M4
Pl

4

α2

ξ̃2

(
cosh(ε

√
ξϕ/MPl)− 1

)
. (11)

This potential is clearly the non-compact analogue of
the generic axion-type potentials for the case of a bro-
ken compact symmetry. Note, that the analogue of the
axion decay constant appearing here is effectively given
by MPl/ε

√
ξ, which can be � MPl for small ε. How-

ever, obtaining a ‘large decay constant’ and allowing for
an even larger range of variation of ϕ is straightforward
here. The cosmological parameters are

εV =
1

2
ε2ξ coth2(ε

√
ξϕ/2MPl) , ηV =

εV

cosh(ε
√
ξϕ/MPl)

,

N ' 2

ε2ξ
log
[
cosh(ε

√
ξϕ/2MPl)

]
, (12)
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FIG. 2: Line of values of ns and r for ε
√
ξ ∈ (0, 0.5], with

points at ε
√
ξ = 0.1, 0.01, for either sign of ϕ0. The same

results are obtained for negative ε. The red and blue con-
tours show the 68% and 95% confidence regions by Planck
and BICEP2 respectively.

which again only depend on the combination ε
√
ξ. In

Fig. 2 we show the line of values of ns and r for ε
√
ξ ∈

(0, 0.5], with points at ε
√
ξ = 0.1, 0.01, for either sign of

ϕ0. The same results are obtained for negative ε. Small
values of |ε| yield approximately the same result as for
ε = 0.01 (which is also very similar to the result at small
ε for the previous potential, see Fig. 1). Thus this par-
ticular model predicts a relatively large tensor-to-scalar
ratio r ∼> 0.1. This is not surprising since the potential is
an extrapolation of the quadratic potential, which gener-
ically yields larger r [3, 11]. The normalization of the
scalar power spectrum is again approximately given by
Eq. (9) for the same choice of parameters ε, ξ, ξ̃.

Understanding the regime of validity of our effective
field theory is straightforward in the Einstein frame
where the inflaton ‘decay constant’, associated to the
spontaneous breaking of scale invariance, is f = MPl/

√
ξ.

The cutoff is at or below ΛUV = 4πMPl/
√
ξ. We can

explicitly check this by studying the operators at higher
order in derivatives encoded in ∆L in Eq. (1), and identi-
fying the effective cutoff scale that suppresses them. One
such term is R2, which in the Einstein frame gives rise to

1

g2
R

R2 → 1

g2
R

[
R+ 6

( √
ξ

MPl
∇2ϕ− ξ

M2
Pl

(∇ϕ)2

)]2

.

Each of the terms on the r.h.s. indicates that the cutoff
lies at, or somewhat below, ΛUV . For instance, the R2

term can be regarded as arising from integrating out a
scalar of mass M2

R ' g2
RM

2
Pl, which for the NDA esti-

mate gR ∼ 4π, sets the cutoff at ΛUV ≈ MR ∼ 4πMPl.
Similarly, the other two terms set the cutoff at ΛUV ≈
(g2
R/ξ)MPl ∼ 4πMPl. Notice however that by taking

small values of ξ̃ in Eq. (3), for which ξ ' 2ξ̃, this latter
cutoff can be raised above the naive expectation, contrary
to the R2 case. The same behavior as for R2 is found for
the R2

µν/g̃
2
R operator. In this case it corresponds to a

spin-2 ghost field with mass M̃2
R ' g̃2

RM
2
Pl. As long as

g̃2
R is sufficiently large, the cutoff is above MPl.

We stress again that since the inflaton is derivatively
coupled – it appears through its derivatives ∇ϕ, in any
of the operators in ∆L – the field excursion of the infla-
ton beyond ΛUV is not a problem given that the inflaton
potential is almost flat. Large ϕ values could be problem-
atic in non-derivative terms, associated with the explicit
breaking of the shift symmetry. However – as long as the
breaking of the scaling/shift symmetry is weak – they are
small and under control, via ε-suppression. Even if the
actual explicit breaking of scaling symmetry is belowMPl

but is weak, the low energy theory remains extremely well
protected by the approximate shift symmetry, essentially
staying valid all the way up to the scale of quantum grav-
ity, because the scaling symmetry breaking sector is very
efficiently sequestered from the low energy inflaton.

Finally we turn to the dynamics of the matter fields,
which is clearly dependent on the UV completion. As-
suming that at very high energies the SM fields are
the proper degrees of freedom, the couplings in the
matter Lagrangian LM are classically marginal, with
the exception of the Higgs mass. Thus at tree-level
the SM Lagrangian is scale invariant, while the Higgs
mass parameter constitutes a small explicit breaking of
O(m2

H/M
2
Pl). At loop-level the SM couplings run, but

the β-functions at high energies are perturbatively small,
of O(1/16π2). The exact form of the couplings between
the dilaton/inflaton and the SM matter fields depend on
the details of the embedding of the SM fields into the
scale invariant UV theory. To obtain their couplings,
one can dress the dimensionful parameters with the ap-
propriate powers of Φ/〈Φ〉 = eϕ/f , with f = MPl/

√
ξ.

This leads to a decay rate to W , Z and h bosons of

Γϕ '
4ξ

32π

m3
ϕ

M2
Pl

' 0.5 GeV

(
ξ

1/12

)( mϕ

1013 GeV

)3

,

(13)
where the mass of the inflaton, in the simplest example
of Eq. (6) is given by

mϕ = MPl
αε
√
ξ

ξ̃
' 1013

( α

0.1

)( ε√ξ
0.01

)(
16π2

ξ̃

)
GeV .

(14)

The reheat temperature is generically dominated by
ϕ→WW,ZZ, hh decays, and is given by

TRH ∼ g−1/4
∗ (ΓMPl)

1/2 ∼ 3× 108 GeV , (15)

for g∗ ∼ O(100) and for the parameters chosen above.
We can see that this temperature is high enough to ac-
commodate baryogenesis, but sufficiently low to avoid
restoration of high scale symmetries (like GUT) and pre-
vent any regeneration of undesired topological defects.
So, in closing we note that our construction represents a
fully viable model of large field inflation.
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