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The interface between a doped semiconductor material and electrolyte solution is of considerable
fundamental interest, and is relevant to systems of practical importance. Both adjacent domains
contain mobile charges, which respond to potential variations. This has been exploited to design
sensors, electronic, optoelectronic and other enabling semiconductor colloidal materials. We show
that the charge mobility in both phases leads to a new type of interaction between semiconductor
colloids suspended in aqueous electrolyte solutions. This interaction is due to the electrostatic
response of the semiconductor interior to disturbances in the external field upon the approach
of two particles. The electrostatic repulsion between two charged colloids is reduced from the one
governed by the charged groups present at the particles surfaces. This type of interaction is unique to
semiconductor particles and may have a substantial effect on the suspension dynamics and stability.

PACS numbers: 82.70.Dd, 73.40.Mr

Semiconductor colloids are of significant fundamental
interest and present opportunities for new and exciting
applications [1, 2]. A basic property pertinent to any
colloidal system is its stability. Semiconductor colloids
are no different. Strategies to stabilize such systems em-
ploy electrostatic and/or steric [3, 4] repulsion against
van der Waals attraction to prevent the particles from
coagulation. The balance between electrostatic repulsion
and van der Waals attraction is the foundation of the
celebrated Derjaguin-Landau-Verwey-Overbeek (DLVO)
theory of colloid stability [5, 6]. We find that the charge
density in the doped semiconductor particle interior plays
an essential role and can significantly alter the overall in-
teraction. It has been experimentally established that
the charge density inside a doped semiconductor in the
vicinity of semiconductor-electrolyte interface will shift in
response to changes in the electrostatic potential in the
electrolyte phase. This effect has been exploited to per-
form force measurements [7, 8] and is utilized in a signif-
icant number of sensing applications that use nanoscale
semiconductors [9–13].

We hypothesize that the internal charge redistribution
due to external field perturbation should in turn affect
the force between two approaching semiconductor col-
loidal particles. Hence, the DLVO theory has to be re-
visited when applied to doped semiconductor colloids. In
this Letter we provide such a revision based on a general
electrostatic analysis. We show that the internal response
of the doped semiconductor particles to changes of the
potential in the electrolyte may have a dramatic effect
on their kinetic stability. In addition, it opens up possi-
bilities to new methods for control and manipulation.

The system under consideration consists of two spher-
ical colloidal particles suspended in electrolyte solution.
In order to be specific let the particles have Si cores (other

semiconductors will perform similarly) and the terminal
ligands at the surface are − SiO− groups [3]. Such ox-
ide layer may naturally form when Si is exposed to air
or water that has dissolved oxygen. The −SiO− groups
are subject to surface charge regulation [14–16] through
chemical equilibria with constants K− and K+ such that,

SiOH+
2
⇀↽ SiOH + H+, pK+ = − log10 K+ (1)

SiOH ⇀↽ SiO− + H+, pK− = − log10 K−.

We will assume (without loss of generality) that the
cores are n-doped. The potential Ψ in the two domains
is described by the Poisson equation [17],

∇2Ψ = − ρ

εε0
(2)

where ρ is the charge density, ε and ε0 are the medium
dielectric permittivity, and the dielectric constant of vac-
uum respectively. The charge density in the electrolyte
solution is distributed according to Boltzmann’s classical
statistical mechanics. In contrast, the charge distribu-
tion density in the doped semiconductor particle core is
subject to quantum exclusion limitations and may have
to be described by a temperature dependent Fermi-Dirac
distribution [18, 19]. The charge densities are given as,

ρ =


∑
i

n0
i zi exp

(
−zieΨ
kBT

)
electrolyte

eNd

[
1− χF1/2

(
µ−eΨ
kBT

)]
semiconductor

0 oxide

(3)

where e is the fundamental unit of charge, kBT is the
thermal energy, n0

i is the bulk number density of species
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i, zi is the charge of ion i, Nd is the number density of
donors in the semiconductor, and h̄ is the reduced Planck
constant. F1/2 is the Fermi integral and is defined as,

F1/2(x) =
2√
π

∫ ∞
0

dt
t1/2

1 + exp(t− x)
, (4)

where µ is the Fermi level [19], and the parameter χ is
given by,

χ =
1

4Nd

(
2m∗kBT

πh̄2

)3/2

, (5)

where m∗ is the effective mass of the electron. The charge
density inside the oxide layer is zero.

Since we are considering a system at room temper-
ature, it is appropriate to use the limiting case of the
Fermi function where,

χF1/2

(
µ− eΨ
kBT

)
→ exp

(
− eΨ

kBT

)
. (6)

The boundary conditions required to solve Eq. (2),
are to match potentials at the interfaces of the semicon-
ductor (subscript “sc”), oxide (subscript “ox”) and elec-
trolyte (subscript “el”) such that the charge regulating
boundary condition is enforced at the oxide-electrolyte
interface through,

Ψox = Ψel = Ψs;σs = n · [εox (∇Ψ)ox − εel (∇Ψ)el] (7)

while the boundary conditions applied at the
semiconductor-oxide interface are,

Ψsc = Ψox; 0 = n · [εsc (∇Ψ)sc − εox (∇Ψ)ox] (8)

where σs and Ψs are the surface charge and potential
governed by the chemical equilibria given in Eq. (1), n
is the vector normal to the surface, and εsc, εox, εel are
the dielectric constants of the semiconductor, oxide and
electrolyte respectively.

In this model we use a site dissociation model such
that the charge density is given by [14, 20],

σs(Ψs) =
eΓδ sinh[e(ΨN −Ψs)/kBT ]

1 + δ cosh[e(ΨN −Ψs)/kBT ]
. (9)

Γ is the number of ionizable groups per unit area at the
surface, δ = 2

√
K−/K+, Ψs is the potential at the solid-

liquid interface (see Eq. (7)), the Nernst potential ΨN is
given as,

ΨN =
kBT

e
ln(10)(pI− pH) (10)

the isoelectric point is given as pI = (pK+ + pK−)/2, pH
denotes the value for the pH far from the interface and
pI is the isoelectric point of the solid-liquid interface.

The spatial dependence of the electrostatic potential Ψ
and charge density ρ on the distance between two parti-
cles with a separation of 10 nm and a particle in isolation
is shown in Figure 1. The results presented in the figure
were obtained by numerically solving Eqs. (2) and (3).
Alternatively the exact analytical solution of Behrens and
Borkovec for interacting surfaces with charge regulation
[21] can be adapted to obtain the same results. As the
distance between the charged particles varies, the poten-
tial distribution changes in the electrolyte filled gap be-
tween the surfaces as well as in the particle interior. This
is due to the fact that the potentials inside and outside
of particles are connected through Eqs. (7) and (8). The
coupling goes both ways, hence the potential and charge
distributions in the electrolyte will be affected by the fact
that inner charges respond by internal redistribution to
the particle approach.

FIG. 1: One dimensional potential distributions in the elec-
trolyte solution (red), oxide layer (black), and the semicon-
ductor (blue) approximated as infinite flat plates. The solid
line corresponds to two particles separated by 10 nm, while
the dashed line corresponds to the potential distribution of a
single particle in isolation. These curves illustrate how the po-
tential distribution inside the semiconductor responds to the
presence of an approaching colloid. The particles are covered
with −SiO− groups with surface density Γ = 8 × 1018m−2.
These groups may release or attach a proton according to
Eq. (1). The parameters for this calculation are: pH = 3.5,
the overall electrolyte concentration is 0.925 mM (adjusted
by adding symmetric monovalent electrolyte), pK+ = −2,

pK− = 6, and the particle doping is 1024m−3. The dielectric
permitivities were εel = 78.5 for the electrolyte, εsc = 11.7 for
Si, and εox = 3.9 for the 2 nm thick layer of SiO2 [22, 23].

Knowing the effect of separation on the potential and
charge density distributions, in both particle interior and
exterior, allows us to derive the pair electrostatic energy
of interaction between the two spherical colloidal parti-
cles of radius a separated by distance h using the Der-
jaguin method [5, 6],

Ue(h) = πa

∫ ∞
h

dy

∫ y

∞
dzΠe(z), (11)

where y and z are distance variables. A detailed descrip-
tion of the solution and the assumptions made are given
in Supplementary Information, but we should emphasize
here that the pressure Πe depends on the electrostatic
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potentials, and hence on the separation distance. The
total energy of interaction consists of [5, 6]

U(h) = Ue(h) + Uvdw(h), (12)

with Uvdw being the van der Waals attractive energy
which for small separations is Uvdw(h) = AHa/12h where
AH is the Hamaker constant [5, 6, 24].

FIG. 2: Interaction between colloids. Interaction energy be-
tween undoped (blue particles, full line) and doped (red parti-
cles, dashed line) semiconductor colloids. As the particles ap-
proach the charge density in the doped particles redistribute
which is illustrated by the gradual color change. The Hamaker
constant used to generate this plots is AH = 5.4 × 10−20 J,
and the particle radius is a = 100 nm. The rest of the pa-
rameters are the same as in Figure 1. The inset shows the
difference between the two energy curves.

The total interaction energy given by Eq. (12) is shown
in Figure 2. The height of the maximum determines
the stability against coagulation. Overcoming the bar-
rier brings the two particles into the region of very close
separations where the van der Waals attraction com-
pletely overpowers the electrostatic repulsion and leads
to irreversible coagulation. The difference between the
energy maxima for doped and undoped semiconductor
colloids, and the parameters listed in Figure 1 and 2 is
slightly more than 4 kBT . It is due to fact that internal
charge density redistribution in the doped semiconduc-
tor reduces the potential in the electrolyte gap between
the particle surfaces. Hence, the electrostatic repulsion
for doped particles is less than that for undoped, which
leads to a different energy curve (see Figure 2). The in-
set shows the energy change that is due to the doping.
This is a new type of colloidal interaction that is uniquely
characteristic to semiconductor colloids in aqueous sus-
pension and is very significant in both magnitude and
range. This effect depends on the doping concentration
and decreases as the latter goes down and vice versa.

Suspensions characterized by a combination of van der
Waals and electrostatic interactions are thermodynam-
ically unstable and, given enough time, will ultimately
coagulate. The energy barrier however provides kinetic

stability that may allow for sufficient time for different
applications and processing. The rate equation describ-
ing the coagulation of two colloidal particles (formation
of doublets) is [25–27],

dn2

dt
= kcn

2
1, (13)

where n2 is the concentration of coagulated pairs (dou-
blets), n1 is the concentration of single particles, t de-
notes time, and kc = k0/W is the rate constant.

With k0 we denote the rate constant in absence of any
long range interactions and energy barriers (the rate is
purely diffusion-limited). The effect of slowing down due
to the presence of an energy barrier is taken into account
by the stability factor [27–29],

W = 4a

∫ ∞
0

H(h) exp [U(h)/kBT ]

h− 2a
dh, (14)

where H(h) = (4h + a)/4h embodies the hydrodynamic
effects [30], also see Supplementary Information.

For the parameters in Figures 1 and 2, the coagulation
rate in an undoped sample will be more than 60 times
slower than the doped sample (see Figure 3). This is a
significant difference that cannot be ascertained using the
conventional DLVO theory. This new effect is entirely
due internal mobility and reconfiguration of charges in
the doped semiconductor. Figure 3a illustrates how the
stability factor W of the colloidal system depends on dop-
ing [see Eq. (14)]. The relative coagulation rate is shown
in the inset. As the doping level increases, the doped
system becomes more unstable and prone to coagulation
and precipitation. Figure 3b illustrates how a change in
ionic concentration affects the stability of the colloids.

In the limit where the surface potential is small, |Ψs| <
26 mV we have derived Eq. (15) for the surface poten-
tial (see also Supplementary Information). The inverse
Debye lengths are given as, κsc =

√
nsce2/εscε0kBT and

κel =
√
nele2/εelε0kBT for the semiconductor and elec-

trolyte phases respectively where nsc and nel are the
number densities of ions, also for the semiconductor and
electrolyte phases respectively. Eq. (15) allows for the
derivation of analytical expressions for the potential dis-
tributions in all phases. Further analysis provides in-
sight into the functional form of the surface potential
in various limits. In the low doping limit κsc → 0 we
recover the equivalent expression for charge regulation
at a dielectric-electrolyte interface. Similarly, when the
thickness of the oxide Lox is large such that Lox → ∞
we again recover the expression for charge regulation at
a dielectric-electrolyte interface. In the high doping, or
metal-like limit where κsc → ∞ and Lox → 0 the effect
from the redistribution of charges in the semiconductor
region is even stronger, as long as there is an oxide bar-
rier to prevent the release of ions into solution. In the
case of a metal-like particle without an oxide, the charge
regulation formulas would have to be revisited.
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FIG. 3: Differences in stability due to doping. (a) Stability of undoped (dashed) and doped colloids (solid) vs. semicon-
ductor doping concentration. The stabilities are useful for calculating time to coagulation. The inset shows relative stability
Wundoped/Wdoped vs. doping. The relative stability is useful for calculating relative times to coagulation for undoped vs. doped
particles. (b) Stability of undoped (dashed) and doped colloids (solid) vs. ionic concentration of the electrolyte. The relative
stability Wundoped/Wdoped vs ionic concentration of the electrolyte is given in the inset. The rest of the parameters are the
same as in Figures 1 and 2.

Ψs =
Γδe sinh(eΨN/kBT )

[δ cosh(eΨN/kBT ) + 1]
[
ε0εelκel tanh

(
κelh

2

)
+ ε0εoxεscκsc

ε0+Loxεscκsc
+ Γδe2(cosh(eΨN/kBT )+δ)

kBT (δ cosh(eΨN/kBT )+1)2

] (15)

The internal mobility of charges (electrons and/or
holes) in semiconductor materials has been experimen-
tally demonstrated and utilized in different sensing ap-
plications [1, 2, 7–12, 31–33]. In this Letter, we used
first principle continuum electrostatics [17] to develop a
simple model that allows one to find the effect of the in-
ternal charge mobility on the external potential distribu-
tion and hence, on the electrostatic interaction between
two approaching colloidal spheres. The internal charge
redistribution manifests itself as a reduction of the elec-
trostatic repulsion (or alternatively can be defined as an
apparent additional attractive contribution to the energy
see the inset in Figure 2). While one may think that this
is interaction is similar to the van der Waals attraction,
the truth is that it has a very different functional depen-
dence on separation. Instead of following a power law it
decays almost exponentially, which is due to its electro-
static origin. It is very interesting that the effect of re-
duction in electrostatic repulsion is primarily dependent
on the doping level and much less on whether the semi-
conductor particles are n-doped, p-doped or mixed. In
addition to the n-doped particle interaction (the dashed
line in Figure 2) we have computed the interaction poten-
tials between p-doped particles as well as that between an
n-doped and a p-doped particle. All these curves practi-
cally collapse onto a single one, which is almost indistin-
guishable from the dashed curve in Figure 2. This means

that the main reason for the observed effect is that there
is a dynamically responsive charged fluid in the particle
interior that responds to potential perturbations. The
polarity of the inner charges is practically unimportant.

The surface chemistry plays a key role in determin-
ing the strength of the interaction between semiconduc-
tor dopants and the electric double layer. The differ-
ence between the chemical equilibria constants ∆pK =
pK− − pK+ determines the strength of the charge regu-
lation at the interface [34]. Large ∆pK allow for larger
changes in the surface potential as the distance h is var-
ied. Particle surfaces with low ∆pK would show lit-
tle change in stability with doping, while surfaces with
large ∆pK (i.e. silica, ∆pK = 8) allow for relatively
large changes in surface potential and hence exhibit large
changes in stability due to doping.

The new type of interaction, we have identified, has
significant implications on the processing and handling
of semiconductor colloids. First obvious conclusion is
that doped colloids will be less stable and much more
prone to coagulation than their undoped counterparts.
Figure 3 gives an idea about the relative time windows
for kinetic stability. As mentioned above, the average
lifetime for a suspension of silicon colloid with 1018/cm3

doping level will be more than 60 times shorter than that
for an undoped sample with the same surface chemistry.
This effect can be exploited to separate doped from un-
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doped particles in aqueous suspensions, or even sort the
particles based on their doping. Heavily doped parti-
cles will precipitate faster and can be separated from the
rest by simple filtration or centrifugation. They then can
be redispersed using sonication. The procedure can be
repeated multiple times to obtain particles with narrow
distribution of the doping levels.

Increasing the pH beyond the isoelectric point leads
to an increase in the value of the surface potential and
hence, increase the repulsion and stability of the suspen-
sion. Similar will be the effect of reducing the background
electrolyte concentration, which will extend the range of
the overall electrostatic repulsion. Colloidal suspensions
can be used to fabricate ordered crystal-like structures
that have excellent properties for photonics applications
[35]. Figure 2 implies that among other things the parti-
cle doping may have an effect on the spacing and ordering
in crystals composed of semiconductor colloidal particles.
Doped particles will be spaced on the average closer than
undoped particles. For example a close inspection of the
energy curves in Figure 2 show that the average doped
particles spacing will be about 2 nm smaller than that
for the undoped. We are convinced that better under-
standing of the interface between semiconductor materi-
als and electrolyte solutions will be instrumental in the
effort to design novel “smart” materials at the micro and
nanoscale.
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