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Controlled flow of spin and valley pseudospin is key to future electronics exploiting these internal
degrees of freedom of carriers. Here we discover a universal possibility for generating spin and
valley currents by electric bias or temperature gradient only, which arises from the anisotropy
of Fermi pockets in crystalline solids. We find spin and valley currents to the second order in
the electric field, as well as their thermoelectric counterparts, i.e. the nonlinear spin and valley
Seebeck effects. These second-order nonlinear responses allow two unprecedented possibilities to
generate pure spin and valley flows without net charge current: (i) by an AC bias; or (ii) by an
arbitrary inhomogeneous temperature distribution. As examples, we predict appreciable nonlinear
spin and valley currents in two-dimensional (2D) crystals including graphene, monolayer and trilayer
transition metal dichalcogenides, and monolayer gallium selenide. Our finding points to a new route
towards electrical and thermal generations of spin and valley currents for spintronic and valleytronic
applications based on 2D quantum materials.

PACS numbers: 72.80.Vp, 72.25.-b, 73.50.Lw, 85.75.-d

The discovery of atomically thin two-dimensional (2D)
crystals has opened up new realms in physics, material
science, and engineering [1, 2]. The library of 2D crys-
tals now consists of versatile members including graphene
and its derivatives, oxides, and transition metal dichalco-
genides (TMDs), offering a variety of appealing mate-
rial systems, from gapless to direct-gap semiconductors,
and from metal to wide-gap insulators [1–3]. A rather
common feature of these 2D crystals is the presence of
the conduction and valence band edges at degenerate ex-
trema in momentum space, usually referred to as valleys.
The Fermi surface then consists of well-separated pock-
ets at the valleys, which constitute an effective internal
degree of freedom of the carrier. The exploitation of the
valley pseudospin, as well as spin, in electronics may sig-
nificantly extend the device functionalities [4–9]. The
recent discoveries of valley physics and spin-valley cou-
pled effects in 2D TMDs have significantly boosted their
potential in spintronic and valleytronic applications [10–
18].

The generation and control of spin and valley pseu-
dospin currents are at the heart of spintronics and val-
leytronics [19]. There has been a variety of approaches
based on the detail characteristics of different systems,
for example, the spin injection or pumping from proxim-
ity ferromagnets [20, 21], and the various optical injec-
tion methods that rely on optical selection rules [22–24].
In time reversal symmetric systems, the spin Hall effect
from spin-orbit coupling [25–28] and the valley Hall ef-
fect from inversion symmetry breaking [6, 13] have also
been explored, with possibility of implementation in 2D
crystals [18, 29, 30]. The spin or valley Hall current, how-

ever, is always accompanied by the longitudinal charge
current that is orders of magnitude larger, and such a ma-
jor cause of dissipation cannot be removed as it has the
same linear dependence on the field as the Hall currents.

Here we discover a new origin of valley and spin cur-
rents from the anisotropy of Fermi pockets, a universal
feature of crystalline solids. Such valley and spin currents
can be generated by the electric bias only, and appear in
the second order to the electric field. The quadratic de-
pendence on field makes possible current rectification for
generation of dc spin and valley currents by ac electric
field, with the absence of net charge current. For sev-
eral exemplary 2D crystals including TMDs monolayers
and trilayers, graphene, and GaSe monolayer, we find
appreciable nonlinear spin and valley currents in their
K, Γ, and Λ valleys. We predict that, at p-n junction
in monolayer TMDs [31–33], the nonlinear valley current
will result in unique circular polarization pattern of elec-
troluminescence depending on the orientation of the junc-
tion relative to the crystalline axis. We also predict the
nonlinear valley and spin Seebeck effects, where a tem-
perature gradient can play the same role as the electric
field in giving rise to the valley and spin currents. The
quadratic dependence of the valley (spin) thermopower
on the temperature gradient implies a remarkably simple
way to generate pure valley (spin) flow with zero charge
current by an inhomogeneous temperature distribution.

We focus here on 2D crystals with mirror symmetry
in the out-of-plane (z) direction, where the Bloch states
must have their spin either parallel or antiparallel to
the z-axis. Consider a spin-up Fermi pocket in valley
A with dispersion EA,↑(q), q being the wavevector mea-
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FIG. 1: (a), (b) Carrier distributions of a spin up Fermi pocket
at valley A and a spin down pocket at valley Ā, in an electric
field along +x (a) or −x (b) direction. The anisotropy of the
Fermi pocket results in a difference in the currents from A and
Ā, giving rise to a valley (spin) current quadratic in the field.
The horizontal red (blue) arrows correspond to the current
from the Fermi pocket A (Ā), with the arrow thickness de-
noting the magnitude. (c) Such quadratic dependence in the
field makes possible generation of dc valley and spin currents
by ac electric field, in the absence of net charge current.

sured from A. In an in-plane electric field E, f(q,E)
is the steady-state distribution function of carriers. Not
concerning the Hall effect, the current is then: jA,↑(E) =∫
dqfA,↑(q,E)∇qEA,↑(q). If EA,↑(q) 6= EA,↑(−q), the

current response can also lack the 180◦ rotational sym-
metry, i.e. jA,↑(E) 6= −jA,↑(−E). In a time-reversal sym-
metric system, this current will have a counterpart jĀ,↓
from a spin-down pocket at valley Ā, the time reversal of
A, where EĀ,↓(q) = EA,↑(−q). The Boltzmann transport
equation under the relaxation time approximation then
leads to fĀ,↓(q,E) = fA,↑(−q,−E) [34]. These deter-
mine jĀ,↓(E) = −jA,↑(−E) (Fig. 1). Thus, under the
condition of Fermi pocket anisotropy, the currents con-
tributed by the time reversal pair of Fermi pockets can
have a finite difference: jA,↑(E) − jĀ,↓(E) 6= 0, which is
a valley current as well as a spin current.

We find that such spin and valley currents arise in the
second order of the electric field. In an electric field along
the x-direction, without concerning the Hall effect, the
longitudinal and transverse components of jA,↑ can be
expanded as [34]:

jxA,↑(E) = σxxA,↑E + σxxxA,↑E
2 +O(E3),

jyA,↑(E) = σyxxA,↑E
2 +O(E3). (1)

As jĀ,↓(−E) = −jA,↑(E), we have σxxxA,↑ = −σxxx
Ā,↓ ,

σyxxA,↑ = −σyxx
Ā,↓ , while σxxA,↑ = σxx

Ā,↓. The charge current

is jA,↑(E) + jĀ,↓(E) = 2x̂σxxA,↑E + O(E3), an odd func-
tion of the electric field, while the valley (spin) current is
jA,↑(E)−jĀ,↓(E) = 2(x̂σxxxA,↑+ŷσyxxA,↑ )E2, an even function
of the field. Applying an ac electric field Ex = E cosωt,
the dc charge current is zero, and the valley (spin) cur-

rent becomes

jA,↑ − jĀ,↓ = (x̂σxxxA,↑ + ŷσyxxA,↑ )E2(1 + cos 2ωt). (2)

In addition to a second harmonic term, the valley (spin)
current has a dc component. We note that Eq. (2) im-
plicitly assumes ω−1 being larger than the momentum
relaxation time τ , as it is based on the steady state re-
sponse in Eq. (1). From the symmetry alone, we expect
this rectification effect can exist even beyond the regime
of ωτ < 1.

Monolayer (ML) group-VIB TMDs provide an excel-
lent system to illustrate the different scenarios of the non-
linear spin and valley currents (Fig. 2). The top valence
band in ML TMDs has local maxima at both Γ and K
(K) points. The lowest conduction band has two types
of local minima: the K (K) point, and the low-symmetry
Λ (Λ) points between K (K) and Γ.

For the Fermi pockets at K (K), the anisotropy is the
trigonal warping [44, 45], which breaks the 180◦ rota-
tional symmetry of the pockets. Both the conduction and
the valence bands are spin split in the K valleys [13, 46].
If the Fermi energy is between the split bands, we only
have a spin up (down) Fermi pocket at K (K). Valley
current is then the same as spin current. If the field is
applied along a zigzag direction, the valley (spin) current
is either parallel or antiparallel to the field because of the
reflection symmetry of Fermi pocket (Fig. 2a). For elec-
tric field in armchair direction, we find the valley (spin)
current perpendicular to the field (Fig. 2d-e).

The trigonal warping also exists for the hole pocket at
Γ point. By the time reversal symmetry, the warping is
opposite for the spin up and down pockets (Fig. 2b),
giving rise to a nonlinear spin current. At the six low-
symmetry Λ valleys in the conduction band (Fig. 2c),
the anisotropy leads to valley-dependent current response
to electric field, as well as an overall spin current con-
tributed by all Λ and Λ pockets. The direction of spin
current from Γ or Λ pockets as a function of field orien-
tation is also similar to the K pockets (Fig. 2e and Table
I).

The magnitude of the nonlinear spin and valley cur-
rents depends on the dispersion of the Fermi pockets and
the distribution function in electric field. For the latter,
we adopt the commonly used relaxation time approxima-
tion. Consider for example the K valleys in ML TMDs,
the dispersion of either the electron or the hole near the
Fermi surface can be well fit by [44, 45]:

EK(q) =
~2q2

2m∗
(1 + βq cos 3θq), (3)

where q ≡ (q cos θq, q sin θq), and β has weak dependence
on the Fermi energy [34]. Neglecting the spin and valley
relaxations, the spin and valley currents are (c.f. supple-
mentary material [34]):

js = jv =
12π

~
EFβ|kd|2(cos 2θ,− sin 2θ) +O(|kd|4), (4)
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FIG. 2: (a) Hole pockets at K valleys, (b) at Γ point, and
(c) electron pockets at Λ valleys in monolayer TMDs. Red
(blue) denotes spin up (down). (d) Displacement of K pock-
ets by an electric field in the armchair direction, where the
thick red (blue) arrow corresponds to the current from the
Fermi pocket K (K). The valley (spin) current flows perpen-
dicular to the field. The thin red (blue) arrows illustrate the
group velocity on the displaced K (K) valley Fermi surface.
(e) Dependence of the spin valley current direction (orange
arrow) on the relative angle θ between the field (green arrow)
and the crystalline axis.

where EF is the Fermi energy measured from the band
edge, kd = eτE/~, E ≡ (E cos θ,E sin θ), and τ is
the momentum relaxation time. Clearly, the effect
favors large mobility. Taking the mobility value ∼
1000 cm2V−1s−1 measured at low temperature [47] (or
∼ 200 cm2V−1s−1 at room temperature [48, 49]), we es-
timate the nonlinear valley current starts to exceed the
observed sizable valley Hall current [13, 18] at an electric
field of ∼ 10 mV · µm−1 (∼ 0.25 V · µm−1) [34].

The charge current normalized by e is jc = 4π
~ EFkd +

O(|kd|3). The ratio of the spin and valley currents to the
charge current is

js/jc = jv/jc = 3βeτE/~. (5)

Interestingly, this ratio is independent of EF. We note
that Eq. (4) is for the situation where EF lies between
the spin split bands (c.f. Fig. 2a). This is always the
case for p-doped ML TMDs because of the giant spin
splitting. For n doping, if the higher spin split band is
also occupied, it will have a contribution also given by
Eq. (4), but with js = −jv [34]. Eq. (4) still holds for
the valley current, but the overall spin current can then
differ from the valley current, as listed in Table I.

For the Γ hole pockets in ML TMDs, the dispersion can
be described by Eq. (3) as well, which leads to the spin
current given by Eq. (4). The Λ electron pockets in ML
TMDs have more complicated dispersion. Nevertheless,
the overall spin current from all Λ and Λ pockets is still
given by Eq. (4) [34]. The degrees of the anisotropy β for

the K, Γ, and Λ pockets obtained by fitting the ab initio
bands are listed respectively in Table I for ML MoS2. β
in ML MoSe2, WS2, WSe2 are found to have comparable
magnitudes [34]. In ML TMDs, the Γ and Λ pockets only
appear at very large p- and n- doping respectively. In tri-
layer TMDs, Γ and Λ can be the valence and conduction
band edges respectively, and we find nonlinear spin and
valley currents given by Eq. (4) as well [34]. Table I also
listed the nonlinear spin current in p-doped monolayer
GaSe, where the Fermi pockets are at the Λ points [50],
and the result is similar to the TMDs.

Graphene is an example with two representative dif-
ferences from the scenarios discussed above. First, the
bands are spin-degenerate so that spin current must van-
ish. Second, the band dispersion is linear to the lead-
ing order. The conduction and valence bands disper-
sion at the K and K valleys are described by: EK(q) =
±~vF q(1 + βq cos 3θq + O(q2)). Such dispersion can
lead to valley dependent tunneling at potential barriers
[51, 52]. Interestingly, we find that, in graphene, the
nonlinear valley current is still given by Eq. (4), and the
ratio of the valley current to charge current given by Eq.
(5) [34].

Eq. (4) and (5) is derived for the low temperature
regime EF � kBT . Beyond this regime, the spin and val-
ley currents will depend on temperature. Nevertheless,
Eq. (5) for the valley to charge current ratio will still
hold, as this ratio is nearly independent of EF and hence
the filling of the states in equilibrium [34].

The emerging monolayer and multilayer TMD p-n
junction devices [31–33] provide an ideal laboratory for
the exploration of nonlinear valley and spin currents. Un-
der forward bias, electrons (holes) from the K valleys
in the n (p) region will reach the junction and produce
electroluminescence (EL) through recombination. If the
junction is along the armchair direction, the valley (spin)
current is collinear to the charge current, and carriers
accumulated in the junction region are valley polarized.
With the valley dependent optical selection rule [7, 13–
17], we expect the EL will have an overall circular po-
larization (Fig. 3a). Given a reasonable forward bias
E ∼ 10 V · µm−1, the EL polarization is estimated to be
∼ 20% [34], which changes sign when the p-n junction
flips (Fig. 3a). This nonlocal valley transport effect is
in qualitative agreement with the polarized EL reported
very recently in thin flake WSe2 p-n junctions [53].

Our theory also predicts a unique spatial pattern of
EL polarization when the junction is not along the arm-
chair direction, which distinguishes it from other possible
mechanisms for the polarized EL [13, 53]. Consider a p-n
junction along the zigzag direction, the valley (spin) cur-
rent is perpendicular to the charge current, and carriers
will accumulate with opposite valley polarizations at the
two sides where the EL will then have opposite circu-
lar polarization. This spatial dependence clearly distin-
guishes the nonlocal valley transport here from the effect
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monolayer MoS2 trilayer MoS2 GaSe graphene

K, h K, e * Λ, e Γ, h Λ, e * Γ, h Λ, h * K, e (h)

js ( 12π
~ ) βEFk2d β∆k2d 3βEFk2d βEFk2d 3β∆k2d βEFk2d 3β∆k2d 0

jv ( 12π
~ ) βEFk2d β(2EF −∆)k2d # n/a # n/a # βEFk2d

β (Å) −0.94 −0.49 0.33 −0.12 0.09 −0.01 −1.62 −0.36

θv(s) π − 2θ π − 2θ −2θ π − 2θ −2θ π − 2θ π − 2θ π − 2θ

TABLE I: Spin current (js) and valley current (jv) in several hexagonal 2D crystals. The direction angles of the current (θs/v)
and the field (θ) are both defined with respect to a zigzag axis.
* For these cases we assume EF is larger than the small spin splitting ∆, so that both spin bands are occupied at each valley.
# Valley current is finite but lacks a unique definition.

(a) (b) 

R -R 0 

FIG. 3: (a) Polarized electroluminescence (EL) from p-n junc-
tion along armchair direction. The EL has an overall circular
polarization R ∼ jv/jc. Green (yellow) color denotes the hole
(electron) doped region, and red (blue) color denotes the σ−
(σ+) circular polarization. Hole has larger anisotropy, and
hence larger nonlinear valley current which determines the
EL polarization. (b) Spatial pattern of EL polarization from
p-n junction along zigzag direction.

of local change in the population of recombining elec-
trons and holes by the electric field at depletion region
proposed in Ref. [53]. The effect is also distinct from the
valley Hall current [6, 13, 18]. When p-n junction flips
sign, the EL polarization on the two sides will change
sign if it arises from the valley Hall effect, but will re-
main unchanged if it is from the nonlinear valley current
(Fig. 3b).

Similar to that in an electric field, we find the second-
order nonlinear response to a temperature gradient∇T is
a pure valley (spin) current, while the linear response is a
charge current [34]. Taking the K pockets in ML TMDs
for example, the direction of nonlinear valley current is
also given by Fig. 2e, where θ now represents the relative
angle between the direction of ∇T (green arrows) and a
zigzag axis. If T

|∇T | is much larger than the mean free

path, we find the ratio between the valley and charge
currents [34]:

jv/jc =
6

~
αβkB |∇T |τ, (6)

where the dimensionless coefficient α is a function of EFkBT
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FIG. 4: (a) The dimensionless coefficient α that measures the
ratio between the valley (spin) current and the charge current
by a temperature gradient (see Eq. (6)). (b) Spin and val-
ley currents can be generated by an arbitrary inhomogeneous
temperature distribution. The charge current vanishes as long
as the temperatures at the two ends of the device equal.

only, as shown in Fig. 4a.
For EF � kBT , we find α ∼= EF/kBT , and the valley

current is given by:

jv(∇T ) =
8π3

~3
EFβk2

B |∇T |2τ2(cos 2θ,− sin 2θ). (7)

Interestingly, comparing this with Eq. (4), we find(
1

kB |∇T |

)2

jv(∇T ) =
2π2

3

(
1

eE

)2

jv(E), (8)

which holds true for the other cases of nonlinear spin and
valley currents discussed in Table I.

The quadratic dependence of valley and spin currents
on the temperature gradient makes possible the genera-
tion of pure valley and spin flows. Consider an arbitrary
inhomogeneous temperature distribution where the tem-
peratures at the two ends of the device equal, the charge
current is then zero, but the valley (spin) current is finite
(Fig. 4b). This is an unprecedentedly simple way for
generating pure valley and spin flows.
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