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We have developed and implemented a new quantum molecular dynamics approximation that
allows fast and accurate simulations of dense plasmas from cold to hot conditions. The method is
based on a carefully designed orbital-free implementation of density functional theory (DFT). The
results for hydrogen and aluminum are in very good agreement with Kohn-Sham (orbital-based)
DFT and path integral Monte Carlo (PIMC) for microscopic features such as the electron density as
well as equation of state. The present approach does not scale with temperature and hence extends
to higher temperatures than is accessible in Kohn-Sham method and lower temperatures than is
accessible by PIMC, while being significantly less computationally expensive than either of those
two methods.
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A significant challenge of high energy density physics is
the determination of the fundamental properties of plas-
mas (e.g. equation of state, transport properties) over a
wide range of temperatures and densities [1, 2]. Systems
of particular focus include warm dense matter [3], inertial
confinement fusion, notably the compression pathway to
ignition, and astrophysical plasmas. Two methods have
emerged as standards for such calculations which have
yielded quality results. Those are quantum molecular
dynamics based on Kohn-Sham density functional theory
[4–6] and path integral Monte Carlo [7, 8]. Due to the
nature of the method, PIMC becomes prohibitive as the
temperature is decreased and Kohn-Sham DFT becomes
prohibitive with increasing temperature as the number
of required orbitals increases with temperature and in
general the method scales as the cube of the number of
orbitals. It is possible to find the region of overlap for
these calculations, but such a region is generally difficult
for both methods [8, 9]. For example with deuterium at
4 g/cc overlap calculations have be done at temperatures
5-20 eV, while for carbon very expensive overlap calcu-
lations have been done from 40-60 eV; for still heavier
elements such as aluminum and iron, PIMC calculations
do not exist and Kohn-Sham molecular dynamics have
not been pushed much above 10 eV [10, 11]. In this letter
we develop and implement an orbital-free DFT formula-
tion which provides accuracy at the level of Kohn-Sham
DFT and PIMC at significantly lower cost, while span-
ning from low to high temperatures.
In DFT the fundamental quantity is the free energy,

which is minimized to find the electron density. For a
given ionic configuration the free energy is a functional
of the electron density, n, and is given by [12]

F [n] = Fs[n] + FH [n] + Fxc[n] + Fei[n] (1)

where Fs is the non-interacting free energy comprised of
both kinetic and entropic parts, FH is the Hartree energy
or direct Coulomb interaction between the electrons, Fei

is the electron-ion Coulomb interaction, and Fxc is de-
fined as the remainder of the total free energy, which in-
cludes the quantum mechanical exchange and correlation
as well as the excess kinetic and entropic terms. Of the
contributions neither Fs or Fxc have explicitly calculable
forms. Given the same orbital-free Fxc approximation,
the only difference in approach of orbital-free DFT from
Kohn-Sham DFT is that the non-interacting free energy,
Fs, is approximated by a density functional instead of
being exactly obtained through the calculation of single
particle orbitals [13]. Thus orbital-free DFT [3] returns
to a pure DFT which, as given by the Hohenberg-Kohn-
Mermin theorems [14, 15], is an exact theory.

Significant efforts have been made at zero temperature
in developing advanced orbital-free functionals with high
quality results [16–22]. Though without analogous ef-
forts, in recent years the orbital-free approach at finite
temperature has gained attention, with most results be-
ing for hot dense systems where the venerable Thomas-
Fermi approximation is employed for Fs [23–25]. The
work of Perrot offered a density gradient correction to
Thomas-Fermi that improves results moderately [26, 27].
Other more recent semi-local functionals [28] have also
been considered. None of these functionals, though, have
reached the accuracy of Kohn-Sham across temperature
regimes.

In this work we develop and implement an advanced
density functional for Fs, valid at zero temperature as
well as finite temperature, which provides highly accurate
agreement with Kohn-Sham results, yet is temperature
independent in computational cost, since the dependence
is on the density only.

We now give a summary of our functional. Further
details of individual terms, and all other quantities nec-
essary for quantum molecular dynamics implementation
are given in the Supplemental Material [29]. The pro-
posed functional for the non-interacting free energy is of
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the following form

Fs[n] = FTF [n] + βFvW [n] + Fa,b[n]. (2)

Here the first term on the RHS is the familiar Thomas-
Fermi [30] term

FTF [n] =

∫

fTF (n(r)) dr , (3)

where fTF is just the non-interacting electron gas en-
ergy per volume at density n. The second term on the
RHS is the here proposed extension of the semi-local von
Weiszäcker term

βFvW [n] =
~
2

2me

∫∫

[(∇n1/2(r)) · (∇n1/2(r′))]×

[δ(r− r
′) + β(|r − r

′|)] dr′dr . (4)

In the limit β(|r − r
′|) = 0 this reduces to the standard

von Weiszäcker [31] term

FvW [n] =
~
2

me

∫

|∇n(r)|2

8n(r)
dr . (5)

The final term is a nonlocal density contribution to the
free energy [32]

Fa,b[n] =

∫∫

na(r)w(|r − r
′|)nb(r′) dr′ dr . (6)

with a and b free parameters, and chosen to be a = b =
5/6.
This leaves still undetermined the kernels β and w. To

proceed the functional is constrained to reproduce the
exact density-density response function (Lindhard), χ̃0,
of the non-interacting uniform electron gas as follows,

χ̃−1
0 (k;n0, T ) = −F̂

(

δ2FS [n, T ]

δn(r)δn(r′)

∣

∣

∣

∣

n0

)

. (7)

Here F̂ denotes the Fourier transform of the second func-
tional derivative of Fs evaluated at the average density
n0. This results in the following relation for the w and β
kernels in reciprocal space

w̃(k) =
−χ̃−1

0 (k) + χ̃−1
TF + [1 + β̃(k)]χ̃−1

vW (k)

2abn
(a+b−2)
0

≡ f(k)
−χ̃−1

0 (k) + χ̃−1
TF + χ̃−1

vW (k)

2abn
(a+b−2)
0

, (8)

where χ̃−1
TF and χ̃−1

vW (k) are the contributions to Eq. (7)
from Eq. (3) and Eq. (5) respectively. For convenience
we have written w̃ in terms of f(k) in the second line. We
may now choose f(k) with the only constraint that f(k)
remains finite. Satisfaction of Eq. (8), then determines w̃
and β̃, and guarantees the functional produces the exact
response and free energy in the uniform electron gas limit.

At zero temperature [16–20] and more recently at fi-
nite temperature [32] the case f ≡ 1 (i.e. β ≡ 0), has
been investigated. Though this case meets the require-
ment of correcting the response, it produces a kernel,
w̃, which goes to constant negative value in the large k
limit (k > 10kF ) and thus results in the functional be-
ing unbounded and producing unphysical densities with
infinitely negative energy [33]. We have added the non-
locality β in Eq. (4) to alleviate this issue, while still
enforcing the exact response. In order to force w̃(k) to
zero for large k (k > 10kF ), removing the aforementioned
difficulty of the f ≡ 1 case, we consider the interpolating
f(k) = e−k2/α2k2

F with α = 4.

We have applied the new functional to hydrogen and
aluminum over a wide range of density and temperatures.
In these calculations we use a local pseudopotential for all
orbital-free calculations as well as for some Kohn-Sham
calculations. Using the same pseudopotential provides
an apple to apple comparison of our Fs functional to
the exact Kohn-Sham method for Fs, since we also use
the same Fxc approximation in all cases. In addition we
perform Kohn-Sham calculations with a more standard
nonlocal pseudopotential for comparison.

The details of the calculations are as follows. The local
pseudopotentials for hydrogen and aluminum are given in
Refs. 28 and 34 respectively. In the orbital-free calcula-
tions the numeric grid sizes were 643 or 963 depending on
system size and density. For the Kohn-Sham calculations
we used the Quantum-Espresso code [35] and planewave
cutoff energies of 2040 and 680 eV for hydrogen and alu-
minum respectively, and all calculations were done at the
Gamma-point only. All calculations use the local density
approximation [36] for Fxc.

First we consider the computational cost. The time
required for the optimization of the electron density for
a given random arrangement of 128 hydrogen atoms at
density 2 g/cm3 at various temperatures is shown in Fig.
1, as calculated on a 8-core 2.93 Ghz Intel Xeon machine.
This corresponds to the time for a single molecular dy-
namics time step. For the Kohn-Sham case the temper-
ature scaling is clearly shown as a bottleneck to higher
temperature simulations as the time goes from under 10
seconds at 1 eV to over 1200 seconds at 24 eV and over
4300 seconds at 32 eV. The required number of orbitals
goes from 100, to 1600, to 2400 respectively to achieve a
threshold occupation of 10−6. In contrast for the orbital-
free methods there is no scaling with temperature. Our
functional took generally 4-6 seconds whereas the simpler
Thomas-Fermi calculations took about 2 seconds. It is
of note that though the nonlocal terms of Eqs. (4) and
(6) appear computationally expensive, they may be eval-
uated efficiently in reciprocal space through use of fast
Fourier transforms.

Next we consider an important microscopic feature,
the electron density, which by the primary tenet of DFT
determines the system completely. Other integrated
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FIG. 1: Time for a single electron density optimization for 128
hydrogen atoms in a given random arrangement at 2 g/cm3.
The Kohn-Sham temperature scaling is clearly shown as a
prohibitive factor in extending across temperature regimes,
while our functional shows no such issue.

quantities such as the total energy or pressure, which
are often alone considered in determining the accuracy
of a functional, are important results. However, if one
achieves good results in those integrated quantities and
not in the density itself, the integrated results are good
due to some cancellation of errors. So we begin with the
electron density examined through the ion-electron pair
distribution function, gie. Recall that n(r) = n0gie(r)
is the average electron density around an ion. In Fig.
2 the results of three orbital-free functionals are plot-
ted. These include the Thomas-Fermi approximation,
as well as the Perrot functional, and our new functional
given in this work. As explained before the only dif-
ference between these orbital-free calculations and the
Kohn-Sham local pseudopotential (lpp) calculation is in
Fs. The most remarkable feature is that the Kohn-Sham
(lpp) and our functional produce nearly identical gie or
electron densities. On the contrary the simpler function-
als produce quite different densities. We also solve the
Kohn-Sham system with the more standard approach of
a nonlocal pseudopotential (nlpp). Comparing the Kohn-
Sham (nlpp) results we see good agreement for the hy-
drogen case over the whole range and good agreement
for aluminum outside the pseudopotential cutoff radius,
around r/rws = 0.6.

Next we consider two cases of fixed ions. First we con-
sider hydrogen as a simple-cubic lattice at 2 g/cc and
temperatures from 1 to 1000 eV. In the top panel of Fig.
3 the pressure is plotted up to 10 eV for the functionals
and pseudopotentials as previously described. Here at
fixed density the increase in pressure with temperature is
completely due to the thermal excitation of the electrons.
The maximum difference between the Kohn-Sham (nlpp)
results and our functional is less than 0.5%, whereas the
maximum difference for Thomas-Fermi and Perrot func-
tionals are 24% and 14% respectively. Above 40 eV the
differences between the functionals is negligible. In the
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FIG. 2: Top: The ion-electron pair correlation function gie(r)
is plotted for a random distribution of hydrogen atoms at den-
sity 2 g/cc and temperature of 5 eV. Bottom: is the same but
for aluminum at 2.8 g/cc and temperature 100 K = 0.008617
eV. rws is the ion Wigner-Seitz radius. Both systems show
excellent agreement for the electron densities between our
functional and Kohn-Sham where the same pseudopotential
is used.

lower panel we consider face-center-cubic aluminum at
100 K = 0.008617 eV near equilibrium density. Here
again there is excellent agreement for the present func-
tional and Kohn-Sham methods. The simple Thomas-
Fermi functional does not exhibit any binding, as indi-
cated by the pressure becoming negative, and while the
Perrot correction does it is significantly different from the
results of Kohn-Sham and our functional.

Now we consider molecular dynamics simulations for
warm dense deuterium and aluminum. Note deuterium
is examined to connect with the PIMC data, and involves
the same pseudopotentials as for hydrogen. Equation of
state results are plotted for deuterium at 4.04819 g/cc
and temperatures from 1 to 100 eV in Fig. 4. In addi-
tion Kohn-Sham results are plotted up to 15.7 eV and
path integral Monte Carlo [7] results down to 5.4 eV.
While the Kohn-Sham method becomes computationally
prohibitive with increasing temperature the PIMC does
so with decreasing temperature. The present orbital-free
calculations however span the entire temperature range
and are significantly less expensive than the other meth-
ods at any temperature while showing good agreement
with both the Kohn-Sham and PIMC in their respec-
tive regions of applicability. Specifically our functional
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FIG. 3: Pressure results for simple cubic hydrogen at 2 g/cc
(top) and for fcc aluminum at 100 K = 0.008617 eV (bottom).
Both results show our functional closely reproducing Kohn-
Sham results.

results never deviate by more than 2% from either the
Kohn-Sham or PIMC results. Similar results have been
obtained at 1.0 and 10.0 g/cc as well (not shown). We
note also that for dilute systems such as deuterium below
0.5 g/cc accuracy does diminish. For both the orbital-
free and Kohn-Sham calculations 128 atoms were simu-
lated for 10000 and 5000 time steps respectively. The
times steps varied with temperature from 0.5 fs at 1 eV
to 0.0125 fs at 100 eV. At 15.7 eV the KS calculation
took 161.5 s per MD step on 48 compute cores, while the
orbital-free calculation took 1.76 s per MD step on 32
compute cores on the same machine.

For the case of aluminum we have calculated the ion-
ion pair distribution function, gii, for two cases. The first
is near melt at the experimental density and temperature
of 2.349 g/cc and 1023 K = 0.08815 eV. Second is the
warm dense case of 2.7 g/cc and 5 eV. Fig. 5 shows
gii for both cases. Our functional and the Kohn-Sham
results are in very good agreement in both cases and
the experimental data is also in agreement at the lower
temperature. Here gii was averaged over 15000 and 6000
time steps for 108 and 64 atoms after equilibration in the
orbital-free and Kohn-Sham calculations respectively.

In summary the present orbital-free functional shows
excellent agreement with Kohn-Sham results while be-
ing computationally less expensive and having applica-
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FIG. 4: Pressure results for deuterium at 4.04819 g/cc. Our
functional is in good agreement with Kohn-Sham and PIMC
and spans the entire temperature range. Bottom panel shows
the relative pressure with Kohn-Sham and PIMC in their re-
spective ranges.
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FIG. 5: Pair distribution function gii(r) for Al at experimen-
tal density 2.349 g/cc and temperature 1023 K = 0.08815 eV
(lower curves) and warm dense conditions 2.7 g/cc and 5 eV
(upper curves, shifted by 2). Excellent agreement is shown
between Kohn-Sham and our functional.

bility to regions of higher temperature than is accessi-
ble by Kohn-Sham methods, as well as very good agree-
ment with PIMC at high temperatures while reaching
lower temperatures than accessible by PIMC. The strong
agreement in the gie(r), as compared with Kohn-Sham
method, shows also that the current results are truly re-
producing orbital-based results and as such demonstrate
a realization of a highly accurate pure density functional
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theory. In future work we will consider more complex
systems with higher atomic number elements as well as
mixtures and lower density systems such as expanded
metals.
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