
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Formation of Hard Power Laws in the Energetic Particle
Spectra Resulting from Relativistic Magnetic Reconnection

Fan Guo, Hui Li, William Daughton, and Yi-Hsin Liu
Phys. Rev. Lett. 113, 155005 — Published  8 October 2014

DOI: 10.1103/PhysRevLett.113.155005

http://dx.doi.org/10.1103/PhysRevLett.113.155005


Formation of Hard Power-laws in the Energetic Particle Spectra

Resulting from Relativistic Magnetic Reconnection

Fan Guo,1 Hui Li,1 William Daughton,1 and Yi-Hsin Liu1

1Los Alamos National Laboratory, NM 87545 USA

(Dated: September 17, 2014)

Abstract

Using fully kinetic simulations, we demonstrate that magnetic reconnection in relativistic plasmas

is highly efficient at accelerating particles through a first-order Fermi process resulting from the

curvature drift of particles in the direction of the electric field induced by the relativistic flows. This

mechanism gives to the formation of hard power-law spectra in parameter regimes where the energy

density in the reconnecting field exceeds the rest mass energy density σ ≡ B2/(4πnmec
2) > 1 and

when the system size is sufficiently large. In the limit σ � 1, the spectral index approaches p = 1

and most of the available energy is converted into non-thermal particles. A simple analytic model

is proposed which explains these key features and predicts a general condition under which hard

power-law spectra will be generated from magnetic reconnection.

PACS numbers: 52.27.Ny, 52.35.Vd, 98.54.Cm, 98.70.Rz

1



Introduction – Magnetic reconnection is a fundamental plasma process that allows rapid

changes of magnetic field topology and the conversion of magnetic energy into plasma kinetic

energy. It has been extensively discussed in solar flares, Earth’s magnetosphere, and lab-

oratory applications. However, magnetic reconnection remains poorly understood in high-

energy astrophysical systems [1]. Magnetic reconnection has been suggested as a mechanism

for producing high-energy emissions from pulsar wind nebula, gamma-ray bursts, and jets

from active galactic nuclei [2–6]. In those systems, it is often expected that the magneti-

zation parameter σ ≡ B2/(4πnmc2) exceeds unity. Most previous kinetic studies focused

on the non-relativistic regime σ < 1 and reported several acceleration mechanisms such as

acceleration at X-line regions [7–9] and Fermi-type acceleration within magnetic islands [8–

11]. More recently, the regime σ = 1-100 has been explored using pressure-balanced current

sheets and strong particle acceleration has been found in both diffusion regions [12–15] and

island regions [16, 17]. However, this initial condition requires a hot plasma component

inside the current sheet to maintain force balance, which may not be justified for high-σ

plasmas.

For magnetically dominated systems, it has been shown [18, 19] that the gradual evolu-

tion of the magnetic field can lead to formation of intense nearly force-free current layers

where magnetic reconnection may be triggered. In this Letter, we perform large-scale two-

dimensional (2D) and three-dimensional (3D) full particle-in-cell (PIC) simulations of a

relativistic force-free current sheet with σ up to 1600. In the high-σ regime, the release of

magnetic energy is accompanied by the energization of nonthermal particles on the same

fast time scale as the reconnection process. Much of the magnetic energy is converted into

the kinetic energy of nonthermal relativistic particles and the eventual energy spectra show

a power-law f(γ) ∝ γ−p over nearly two decades, with the spectral index p decreasing with

σ and system size, and approaching p = 1. The dominant acceleration mechanism is a first-

order Fermi process through the curvature drift motion of particles along the electric field

induced by relativistic reconnection outflows. The formation of the power-law distribution

can be described by a simple model that includes both inflow and the Fermi acceleration.

This model also appears to explain recent PIC simulations [15], which reported hard power-

law distributions after subtracting the initial hot plasma population inside the current layer.

Numerical simulations – The initial condition is a force-free current layer with B =

B0tanh(z/λ)x̂ + B0sech(z/λ)ŷ, which corresponds to a magnetic field with magnitude B0
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FIG. 1: Results from 2D and 3D PIC simulations with σ = 100. (a) Current density from 2D

simulation at ωpet = 375. (b) x-z cut of current density and an isosurface of current density with

color-coded J · E normalized using n0mec
2ωpe at ωpet = 375. (c) Evolution of magnetic energy

EB, total kinetic energy Ek, and kinetic energy carried by relativistic particles with γ > 4. (d)

Evolution of particle energy spectra from 2D and 3D simulations. Subpanel: energy spectrum from

the 3D simulation at ωpet = 700.
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rotating by 180◦ across the layer with a thickness of 2λ. The plasma consists of electron-

positron pairs with mass ratio mi/me = 1. The initial distributions are Maxwellian with a

uniform density n0 and temperature (Ti = Te = 0.36mec
2). Particles in the sheet have a net

drift Ui = −Ue to give a current density J = en0(Ui−Ue) consistent with ∇×B = 4πJ/c.

The simulations are performed using the VPIC [20] and NPIC codes [21, 22], both of which

solve the relativistic Vlasov-Maxwell system of equations.

In the simulations, σ is adjusted by changing the ratio of the electron gyrofrequency

to plasma frequency σ = B2/(4πnemec
2) = (Ωce/ωpe)

2. A series of 2D simulations were

performed with σ = 1→ 1600 and domain sizes Lx×Lz = 300di×194di, 600di×388di, and

1200di × 776di, where di = c/ωpe is the inertial length. For 3D simulations, the largest case

is Lx×Ly×Lz = 300di× 300di× 194di with σ = 100. For high-σ cases, we choose grid sizes

∆x = ∆y = 1.46/
√
σdi and ∆z = 0.95/

√
σdi, so the gyroradius ∼ vthedi/(

√
σc) is resolved.

The half-thickness is λ = 6di for σ ≤ 100, 12di for σ = 400, and 24di for σ = 1600 in order

to satisfy Ui < c. All simulations used more than 100 particles per cell for each species,

employed periodic boundary conditions in the x- and y-directions, and in the z-direction

used conducting boundaries for the fields and reflecting for the particles. A long-wavelength

perturbation [22] with Bz = 0.03B0 is included to initiate reconnection.

Simulation results – Figure 1 contrasts some key results from 2D and 3D simulations with

σ = 100 and domain size Lx×Lz = 300di×194di (Ly = 300di for the 3D simulation). Panel

(a) shows the current density at ωpet = 375 in the 2D simulation. Because of the secondary

tearing instability, several fast-moving secondary plasmoids develop along the central region

and merge to form larger plasmoids [22]. Panel (b) shows an isosurface of current density

colored by J · E at ωpet = 375 from the 3D simulation. As the initial guide field is expelled

outward from the central region, the kink instability [23] develops and interacts with the

tearing mode, leading to a turbulent evolution [24]. Previous studies have suggested different

predictions concerning the influence of σ on the reconnection rate [25–29]. In this letter,

the reconnection rate is observed to increase with σ from Erec ∼ 0.03B0 for σ = 1 to

Erec ∼ 0.22B0 for σ = 1600. Although the 2D and 3D simulations appear quite different,

the energy conversion and particle energization are surprisingly similar. Panel (c) compares

the evolution of magnetic energy EB, plasma kinetic energy Ek, and energy in relativistic

particles with γ > 4. In both cases, about 20% of the magnetic energy is converted into

kinetic energy of relativistic particles. Figure 1 (d) compares the energy spectra at various
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times. The most striking feature is that a hard power-law spectrum with index p ∼ 1.35

forms in both 2D and 3D runs. In the subpanel, the energy spectrum for all particles in

the 3D simulation at ωpet = 700 is shown by the red line. The low-energy portion can be

fitted by a Maxwellian distribution (black) and the nonthermal part resembles a power-law

distribution (blue) starting at γ ∼ 2 with an exponential cut-off apparent for γ & 100.

The nonthermal part contains ∼ 25% of particles and ∼ 95% of the kinetic energy. The

maximum particle energy is predicted approximately using the reconnecting electric field

mec
2γmax =

∫
|qErec|cdt until the gyroradius is comparable to the system size. Although we

observe a strong kink instability in the 3D simulations, the energy conversion and particle

energy spectra are remarkably similar to the 2D results, indicating the 3D effects are not

crucial for understanding the particle acceleration. Since there is more freedom to vary the

parameters in 2D simulations, in the rest of this letter we focus on this limit.

In Figure 2, we present more analysis for the acceleration mechanism using the case

with σ = 100 and Lx × Lz = 600di × 388di. Panel (a) shows the energy as a function of

the x-position of four accelerated particles. The electrons gain energy by bouncing back

and forth within the reconnection layer. Upon each cycle, the energy gain is ∆γ ∼ γ, which

demonstrates that the acceleration mechanism is a first-order Fermi process [11, 30]. To show

this more rigorously, we have tracked the energy change of all the particles in the simulation

and contributions from the parallel electric field (mec
2∆γ =

∫
qv‖E‖dt) and curvature drift

acceleration (mec
2∆γ =

∫
qvcurv ·E⊥dt) similar to [31], where vcurv = γv2‖(b×(b ·∇)b)/Ωce,

v‖ is the particle velocity parallel to the magnetic field, and b = B/|B|. Panel (b) shows

the averaged energy gain and the contribution from parallel electric field and curvature

drift acceleration over an interval of 25ω−1pe as a function of energy starting at ωpet = 350.

The energy gain follows ∆γ ∼ αγ, confirming the first-order Fermi process identified from

particle trajectories. The energy gain from the parallel motion is weakly dependent on

energy, whereas the energy gain from the curvature drift acceleration is roughly proportional

to energy. In the early phase, the parallel electric field is strong but only accelerates a small

portion of particles, and the curvature drift dominates the acceleration starting at about

ωpet = 250. The contribution from the gradient drift was also evaluated and found to be

unimportant. Panel (c) shows α =< ∆γ > /(γ∆t) measured directly from the energy gain of

the particles in the perpendicular electric field (mec
2∆γ =

∫
qv⊥ ·E⊥dt) and estimated from

the expression for the curvature drift acceleration. The close agreement demonstrates that
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FIG. 2: (a) Energy as a function of x-position of four accelerated particles; (b) Averaged energy

gain and contributions from parallel electric fields and curvature drift acceleration over an interval

of 25ω−1pe as a function of particle energy starting at ωpet = 350; (c) α =< ∆γ > /(γ∆t) from energy

gain in perpendicular electric field and by curvature drift acceleration, and from the Equation (6)

using the averaged flow speed and island size; (d) Spectral index of all 2D simulations.

curvature drift term dominates the particle energization. For higher σ and larger domains,

the acceleration is stronger and reconnection is sustained over a longer duration. In panel

(d), a summary for the observed spectral index of all the 2D runs shows that the spectrum

is harder for higher σ and larger domain sizes, and approaches the limit p = 1.

New Model – It is argued that some loss mechanism is needed to form a power-law

distribution [12, 30]. However, the simulation results reported here illustrate clear power-law

distributions in a closed system. Here we demonstrate that these results can be understood

in terms of a model illustrated in Figure 3 (a). As reconnection proceeds, the ambient

plasma is injected into the acceleration region at a speed Vin = cErec ×B/B2. We consider

the continuity equation for the energy distribution function f(ε, t) within the acceleration
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region

∂f

∂t
+

∂

∂ε

(
∂ε

∂t
f

)
=
finj
τinj
− f

τesc
, (1)

with ∂ε/∂t = αε, where α is the constant acceleration rate from the first-order Fermi process,

ε = mec
2(γ − 1)/T is the normalized kinetic energy, τinj is the time scale for injection of

particles from the upstream region with fixed distribution finj and τesc is escape time. We

assume that the initial distribution within the layer f0 and the upstream injected distribution

are both Maxwellian with initial temperature T < mec
2 such that

finj ∝ γ(γ2 − 1)1/2 exp(−ε) ≈
√

2ε

(
1 +

5T

4mec2
ε+ ....

)
exp(−ε) . (2)

For simplicity, we consider the lowest order (non-relativistic) term in this expansion and

normalize f0 = 2N0√
π

√
ε exp(−ε) by the number of particles N0 within the initial layer and

finj by the number of particles injected into the layer Ninj ∝ Vinτinj during reconnection.

With these assumptions, the solution to (1) can be written as

f(ε, t) =
2N0√
π

√
εe−(3/2+β)αt exp(−εe−αt) (3)

+
2Ninj√

π(ατinj)ε1+β
[
Γ(3/2+β)(εe

−αt)− Γ(3/2+β)(ε)
]
,

where β = 1/(ατesc) and Γs(x) is the incomplete Gamma function. The first term accounts

for particles initially in the acceleration region while the second term describes the evolution

of injected particles. In the limit of no injection or escape (τesc → ∞ and τinj → ∞), the

first term in (3) remains a thermal distribution with enhanced temperature eαtT , consistent

with Ref. [30]. However, as reconnection proceeds new particles enter continuously into the

acceleration region and due to the periodic boundary conditions there is no particle escape.

Thus considering the case τesc → ∞ and assuming N0 � Ninj, at the time t = τinj when

reconnection saturates the second term in (3) simplifies to

f(ε, τinj) =
Ninj

ατinj

[
erf(ε1/2)− erf(ε1/2e−ατinj/2)

ε
+

2√
π

e−ατinj/2 exp(−εe−ατinj)− e−ε

ε1/2

]
. (4)

When ατinj > 1, this gives the relation f ∝ 1/ε in the energy range 1 < ε < eατinj as shown

in Figure 3 (b) by directly evaluating (4) for different ατinj. Interestingly, this energy range

for the power-law is below that of the heated thermal particles in the initial layer. Thus in

the limit N0 ∼ Ninj the first term in (3) should be retained and the power-law produced is
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sub-thermal relative to this population. While it is straightforward to obtain the relativistic

corrections arising from the injected distribution (2), we emphasize that these terms do not

alter the spectral index.

In order to estimate the acceleration rate α, the energy change of each particle can be

approximated by a relativistic collision formula [e.g., 32]

∆γ =

(
Γ2
V (1 +

2V vx
c2

+
V 2

c2
)− 1

)
γ, (5)

where V is the outflow speed, Γ2
V = 1/(1 − V 2/c2), and vx is the particle velocity in the

x-direction. The time between two collisions is about Lis/vx, where Lis is the typical size

of the magnetic islands (or flux ropes in 3D). Assuming relativistic particles have a nearly

isotropic distribution vx ∼ c/2

α ∼
c(Γ2

V (1 + V
c

+ V 2

c2
)− 1)

2Lis
. (6)

Using this expression, we measure the averaged V and Lis from the simulations and estimate

the time-dependent acceleration rate α(t). An example is shown in Figure 2 (c). This

agrees reasonably well with that obtained from perpendicular acceleration and curvature

drift acceleration. Figure 3 (c) shows the time-integrated value of ατinj =
∫ τinj

0
α(t)dt for

various simulations with σ = 6−400. For cases with ατinj > 1, a hard power-law distribution

with spectral index p ∼ 1 forms. For higher σ and larger system size, the magnitude of ατinj

increases approximately as ∝ σ1/2.

Discussion – Considering the more realistic limit with both particle loss and injection,

Equation (3) predicts a spectral index p = 1 + 1/(ατesc) when ατinj > 1, recovering the

classical Fermi solution [e.g., 32]. If the escape is caused by convection out of the acceleration

region τesc = Lx/V , the spectral index should approach p = 1 when ατesc � 1 in the high-

σ regime. Although the present simulations employed periodic boundary conditions, most

cases develop power-law distributions within two light-crossing times, indicating that the

boundary conditions do not strongly influence the results. In preliminary 2D simulations

using open boundary conditions [21], we have confirmed these general trends [Guo et al.

2014, in preparation]. For non-relativistic reconnection, the acceleration rate is lower and

thus it takes longer to form a power-law distribution. Take the nonrelativistic limit for (6),

if V = 0.1c, vx = 0.2c, and Lis = 100di, the reconnection has to be sustained over a time

τinj > 2 × 104ω−1pi to form a power law, which significantly exceeds the simulation time of
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most previous studies. It has been suggested that current sheet instabilities may strongly

influence particle acceleration [13]. In contrast, the energy distributions reported here are

remarkably similar in 2D and 3D, despite the broad range of secondary kink and tearing

instabilities in 3D. This surprising result suggests that the underlying Fermi acceleration is

rather robust and does not depend on the existence of well-defined magnetic islands. The

strong similarities between the 2D and 3D acceleration spectra are also consistent with some

key similarities in the reconnection dynamics. In particular, the range of scales for the 2D

magnetic islands is similar to the observed 3D flux ropes. In addition, the reconnection rate

and flow speeds are also quite similar between 2D and 3D, in agreement with other recent

studies [33, 34]. In large open systems, it remains to be seen whether 3D turbulence may

affect the particle escape times. Another important factor that may influence these results

is the presence of an external guide field Bg. Our preliminary simulations suggest that the

key results of this letter will hold for Bg < B0. For stronger guide fields, the energy release

is slower and the associated particle acceleration requires further study.

We have demonstrated that in the regime σ & 1 magnetic reconnection is an efficient

mechanism of converting the energy stored in the magnetic shear into relativistic nonthermal

particles. These energetic particles contain a significant fraction of the total energy released

and, quite interestingly, have a power-law energy distribution with spectral index p ∼ 1 when

ατinj > 1. Physically, this requires that the time scale over which particles are injected into

the acceleration region is longer than acceleration time for the first-order Fermi process.

The results in this letter demonstrate this condition is more easily achieved in regimes with

σ � 1, but may also occur with σ & 1 in sufficiently large reconnection layers. Our new

findings substantiate the importance of fast magnetic reconnection in strongly magnetized

plasmas, and may be important for explaining the high-energy emissions in systems like

pulsars, jets from black holes, and gamma-ray bursts.
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