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We measured the ratios of electroproduction cross-sections from a proton target for three exclusive
meson-baryon final states: ΛK+, pπ0, and nπ+, with the CLAS detector at Jefferson Lab. Using
a simple model of quark hadronization we extract qq creation probabilities for the first time in
exclusive two-body production, in which only a single qq pair is created. We observe a sizable
suppression of strange quark-antiquark pairs compared to non-strange pairs, similar to that seen in
high-energy production.

PACS numbers: 13.60.Le,13.60.Rj,13.87.Fh,14.65.Bt

At high energies the production of hadrons is well de-
scribed by a model in which the color “flux-tube” is “bro-
ken”by a series of qq pair creation events followed by a re-
grouping of the quarks and anti-quarks into color singlet
hadrons. The modeling of the strong force as a color flux
tube explained the linear binding potential of heavy qq
“quarkonia” states, while quark-pair creation models [1]
developed in the 1970’s accounted for hadronic produc-
tion and the non-observance of free quarks.

The “Lund Model” [2] was formulated in the 1980’s
to quantify the fragmentation of very high-momentum
quarks into “jets” of observed hadrons. The qq pair cre-
ation process is modeled as tunneling in a linear poten-
tial, resulting in a probability proportional to the expo-
nential of the quark mass squared divided by the flux-
tube tension of ≈ 1 GeV/fm. Calculations with plausible
quark masses indicated that ss production is reduced by
a factor of about one-third relative to that for uu or dd.
This reduction factor is known as the “strangeness sup-
pression factor”, and is empirically adjusted to approxi-
mate the observed production rates of hadrons.

Strangeness suppression has been studied by various
hadron-production experiments [3] resulting in a success-
ful extension of the Lund Model into, among others, the
JETSET and PYTHIA event generators [4] which repro-
duce observed hadronic production rates in high energy
reactions. Typically, a strangeness suppression factor, λs

≈ 0.3 describes the data well in e+e− collisions up to
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center-of-mass energies of the Z boson mass [5] and in
high-energy deep-inelastic electron proton scattering [6].
Although qq creation is the “kernel” of the process

which transforms quarks into observable hadrons, it is
not well-understood. We designed our study to extract
the flavor-dependence of qq creation in a new kinematic
region: the two-body exclusive limit in which a single qq
pair is created, there are no decay chains to model and
for which we can do an explicit phase-space correction.
In pseudoscalar-meson electroproduction, a beam of

electrons is incident upon a proton target, producing a
final state consisting of the scattered electron and the
outgoing baryon and pseudo-scalar meson. After inte-
grating over the azimuthal angle of the scattered elec-
tron, the cross section can be expressed in terms of the
variables Q2, W , θ∗m, and φ, where q2 = −Q2 is the
squared four-momentum of the virtual photon, W is the
total hadronic energy in the center-of-mass frame, θ∗m is
the meson angle in the γ∗p center-of-mass system and φ
is the azimuthal angle of the reaction plane with respect
to the electron scattering plane:
The differential cross-section can be expressed as:

dσ

dQ2dWdΩ∗
m

= Γv

(

σT + ǫσL + ǫσTT cos 2φ

+
√

ǫ(ǫ+ 1)σLT cosφ
)

, (1)

where Γv is the flux of virtual photons, ǫ is the polar-
ization parameter, and the four structure functions, σT ,
σL, σTT and σLT are the transverse and longitudinal re-
sponse functions and the two interference terms, respec-
tively. This formalism is explained in more detail in a
previous CLAS collaboration paper [7].
Our study was part of a larger program to measure

electroproduction of hadrons from a proton target. The
electron beam energy was 5.499 GeV, with a typical in-
tensity of 7 nA, incident on a 5-cm liquid hydrogen tar-
get. The signal from the scattered electron provided the
data-acquisition trigger. The data-taking period lasted
for 42 days and resulted in the collection of ∼ 4.3 billion
events. After event reconstruction, ∼ 650 million events



3

remained with at least one good electron candidate.
The scattered electron and associated hadrons were

measured in the CLAS detector, a large-acceptance mag-
netic spectrometer [8] based on a six-coil toroidal magnet
with drift chambers providing charged particle tracking,
followed by a Cherenkov detector for electron identifica-
tion, and scintillators and an electromagnetic calorimeter
for particle identification by time-of-flight and energy de-
position, respectively.
The electron was identified by matching a negatively-

charged track in the drift chambers with signals in the
Cherenkov counter and in the electromagnetic calorime-
ter. The identity of the positively-charged particle can-
didate was determined by combining the flight time from
the time-of-flight counters with the momentum and track
length from the drift chamber track to calculate the par-
ticle’s velocity (β) and mass.
We analyzed events with a final state consisting of the

scattered electron plus one positively charged particle (a
K+, π+ or proton). We measured the four-momenta of
the scattered electron and charged hadron, and deter-
mined by missing-mass that the undetected neutral par-
ticle was a Λ, a neutron or a π0, respectively.
The scattered electron’s and charged hadron’s four mo-

menta were used to calculate the independent kinematic
variables: Q2, W , cos θ∗

m
and φ. Our kinematic coverages

are W = 1.65− 2.55 GeV, Q2 = 1.6− 4.6 GeV2 and the
full range of cos θ∗

m
and φ. We defined 720 bins in this

four-dimensional space (see Table I).

Quantity No. Bin Bin Limits

W (GeV) 6 1.65, 1.75, 1.85, 1.95, 2.05, 2.25, 2.55

Q2 (GeV2) 2 1.6, 2.6, 4.6
cos θ∗

m
5 -1.0, -0.6, -0.2, 0.2, 0.6, 1.0

φ (deg) 12 -180., -150., ... 150., 180.

TABLE I: Kinematic binning used in this analysis.

For each event, the missing-mass recoiling from the
scattered electron and identified hadron was calculated
and, by accumulating over all events, a missing-mass
distribution was formed for each four-dimensional kine-
matic bin. For the pπ0 final state, an additional series of
cuts was employed to remove radiative elastic-scattering
events before our fits and mass cuts were applied. We
then fit each missing-mass distribution to a function con-
sisting of a Gaussian peak for the signal and a smooth
polynomial for the background. We subtracted the back-
ground portion of the fit and counted the number of
events within a fixed missing-mass range to obtain the
raw yield, using the fit values for determination of the
statistical uncertainty of the yield.
Corrections for finite acceptance and inefficiencies in

Procedure Systematic Uncertainty
nπ+ pπ0 ΛK+

Raw Yield Determination 7% 17% 12%
Hadron PID cuts 3% 10% 11%
Missing-mass cuts 3.5% 10.5% 2.5%
Background subtraction 5% 6% 0.3%
Efficiency Correction 6% 5% 5%
Event generator dependence 1% 1% 0.7%
Fiducial cuts 2.5% 0.5% 0.2%
Trigger/Tracking eff. 5% 5% 5%
Phase Space Correction 1.0% 0.4% 0.1%

Total Uncertainty 9% 18% 13%

TABLE II: Sources and estimates of systematic uncertainties
of the acceptance-corrected yields.

track reconstruction, particle identification and missing-
mass cuts were made. A Monte Carlo simulation, tuned
to match the momentum resolution of the detector, ac-
counted for run-dependent inefficiencies due to malfunc-
tioning sub-system components.
The acceptance-corrected yields were further corrected

by a two-body phase-space factor [9],

∆ρ2 = |K1|/(16π
2W ) , (2)

where |K1|, the momentum in the center-of-mass frame,
and W are evaluated at bin center. We did not cor-
rect our data for radiative effects because explicit calcu-
lations showed that the radiative correction factors for
the ΛK+ and nπ+ channels agreed within ±10% for all
bins [10], which is smaller than the systematic uncer-
tainty of the ratio, and showed no discernible kinematic
dependence. Some corrected yields for the pπ0 channel
were rejected for further analysis if the acceptance for the
bin in question was lower than 2%.
The major sources and sizes of systematic uncertain-

ties in the determination of the yields are summarized
in Table II, grouped by category. Overall, we assign a
systematic uncertainty of 9%, 18% or 13% to the nπ+,
pπ0 or ΛK+corrected yields, respectively.
We then fit the φ distributions of the corrected yields in

each bin of Q2, W and cos θ∗m to the form A+B cos 2φ+
C cosφ. Some fits were rejected in the case of the pπ0

channel if there were fewer than 9 φ data points (of a
nominal 12) surviving the minimum acceptance cut. This
procedure resulted in 60 independent fitted values of the
(A) terms for the ΛK+ and nπ+ channels, but only 48
for the pπ0 channel. We divided the (A) terms for the
different channels to form the cross-section ratios [11].
Figure 1 shows the three ratios of corrected yields plot-

ted versus cos θ∗m with the different symbols representing
different W bins. The two columns show the 〈Q2〉 = 1.9
GeV2 bin (left) and the 〈Q2〉 = 3.2 GeV2 bin (right).
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The shaded band is centered on the statistical average for
each cos θ∗

m
bin with half-width equal to the systematic

uncertainty on the ratio. Note that the three ratios are
approximately the same for the two Q2 bins while there
is a noticeable fall-off of the ΛK+/nπ+ and pπ0/nπ+ ra-
tios with cos θ∗

m
. Figure 2 shows the same ratios as in

Figure 1, but plotted versus W . Again the two columns
are for the two bins in Q2. One can see that the ratios
are approximately independent of W .
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FIG. 1: (Color online) Ratio of the three exclusive cross-
sections, ΛK+ to nπ+ (top), pπ0 to nπ+ (middle) and ΛK+

to pπ0 (bottom), for bins of 〈Q2〉 = 1.9 GeV2 (left) and
〈Q2〉 = 3.2 GeV2 (right), plotted versus cos θ∗

m
with differ-

ent bins in W shown as different symbols. The systematic
uncertainty is indicated by the shaded band, centered on the
solid (red) line which connects the statistically-weighted av-
erage for each bin. The flat dashed line represents the overall
statistical average for each ratio. The data points are plotted
slightly offset for clarity.

For purposes of comparing with the single value of λs

used to characterize the ratio of strange to non-strange
hadronic production at high energy, we performed a

weighted average over all bins for each ratio of final
states, indicated by the flat dashed line. We obtain the
following average values for the ratios: 〈ΛK+/nπ+〉 =
0.19± 0.01± 0.03, 〈pπ0/nπ+〉 = 0.43± 0.01± 0.09, and
〈ΛK+/pπ0 〉 = 0.50± 0.02± 0.12; the first uncertainty is
statistical and the second systematic.
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FIG. 2: (Color online) Ratio of the three exclusive cross-
sections, displayed as in Figure 1, but plotted versus W with
different bins of cos θ∗

m
shown as different symbols.

We extracted the ratio of qq creation probabilities from
these measured hadronic ratios using a simple factoriza-
tion model in which a quark is knocked out of the proton
followed by a single qq creation and appearance of the
lightest baryon and pseudo-scalar meson consistent with
the quark flavor. We ignored other processes such as
vector-meson coupling to the virtual photon or t-channel
exchange, which might be responsible for the cos θ∗m de-
pendence of our data. Nevertheless, we hope that the
results from our simplified modelling are useful for com-
parison with strangeness suppression results from semi-
inclusive production experiments analysed under similar
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factorization assumptions. We note similarities of our
model with that used by M. M. Kaskulov et al. [12] in
fitting other data from Jefferson Lab on electroproduc-
tion of nπ+ from the proton.
In our model, events are initiated by virtual photon

absorption by a valence u-quark or d-quark in the ra-
tio of the sums of squares of the quark charges (8:1).
This is followed by a single qq produced with probability
P(qq), resulting in a qq state recoiling form a qqq state.
Finally, the qq state hadronizes into the lowest energy
meson state and the qqq state hadronizes into the lowest
energy baryon state, in both cases with unit probabil-
ity, resulting in three possible final states: nπ+, pπ0 or
ΛK+. Note also that we take into account that the π0 is
a 50 : 50 mixture of uu and dd.
Following this simple arithmetic, the hadronic produc-

tion rates (ℜ) can be written in terms of the qq proba-
bilities (P(qq)) as such:
ℜ(ΛK+) ∝ 8 ·P(ss), ℜ(nπ+) ∝ 8 ·P(dd), and
ℜ(pπ0) ∝ 1/2 ·

(

8 ·P(uu) + 1 ·P(dd)
)

.

We use the 〈ΛK+/nπ+〉 ratio to solve for ss/dd and
the 〈pπ0/nπ+〉 ratio to solve for uu/dd:

ss/dd = 〈ΛK+/nπ+〉 = 0.19± 0.01± 0.03 ,

uu/dd = 2
(

〈pπ0/nπ+〉 − 1/16
)

= 0.74± 0.02± 0.18

Finally, we use the 〈ΛK+/pπ0〉 ratio to determine an
independent measure of the ss /dd ratio. We obtain
ss/dd = 1/2 (uu/dd+ 1/8)〈ΛK+/pπ0〉, yielding

ss/dd = 0.28± 0.01± 0.07 assuming uu/dd = 1.0, or

ss/dd = 0.22± 0.01± 0.07 assuming uu/dd = 0.74

(as measured).

The systematic uncertainty on a qq ratio is simply that
of the particle production ratio from which it is derived.
We do not include factors due to the angular dependence
of the ratios, nor do we attempt to quantify the system-
atic uncertainty of our hadronization model. Table III
summarizes the results of this extraction.

Ratio ss/dd uu/dd
ΛK+/nπ+ 0.19 ± 0.03 –

ΛK+/pπ0 “a” 0.22 ± 0.07 –
ΛK+/pπ0 “b” 0.28 ± 0.07 –

pπ0/nπ+ – 0.74± 0.18

TABLE III: Values of ratio of ss to dd and uu to dd shown
according to the experimental ratios from which they are de-
rived. The “a” and“b” cases for the ΛK+/pπ0 data-set refer
to the values of uu/dd used in the extraction of the ss/dd
ratio: 0.74 for the “a” case and 1.0 for the “b” case. The
uncertainties are the systematic uncertainties.

We point out that our result of 0.74±0.18 for the uu/dd
ratio is different from the value of unity expected from
isospin invariance arguments, as assumed, for example,
in high-energy hadronization models. However, we note
that our hadron-production environment is explicitly not
isospin invariant because the target is a proton, with two
valence u-quarks and one valence d-quark. We speculate
that the isospin-dependence of our result for the uu/dd
ratio is related to the difference between the intrinsic u
and d content of the proton as measured in Drell-Yan[13]
and semi-inclusive DIS experiments[14]. Although in-
triguing, unfortunately our measurement is not signifi-
cantly different from unity, especially when model uncer-
tainties are included.

To summarize, our results show a sizable suppression
of the ΛK+ channel relative to the nπ+ and pπ0 chan-
nels from which we use a simple factorization model
to estimate a strangeness suppression factor (ss/dd) of
0.19±0.03, 0.22±0.07 or 0.28±0.07, depending on which
data ratios we use and what we assume for the uu/dd
ratio. Interestingly, these values are similar to measure-
ments of flavor suppression at high energies [3], [5], [6].

These determinations of the flavor dependence of qq
creation are the first in the low-energy exclusive limit
where the connection between the observed hadronic ra-
tios and qq production probabilities is simple because
only a single qq pair is created. However, further devel-
opment of exclusive reaction theory is needed to reduce
the model dependence in the extraction of the qq creation
probabilities from our data. We conclude by noting that
understanding qq production dynamics is an important
part of understanding color confinement in QCD and the
fact that our values for strangeness suppression agree well
with measurements done at much higher energy argues
strongly for the universal nature of these dynamics.
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