
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Nonlinear Structure of the Diffusing Gas-Metal Interface in
a Thermonuclear Plasma

Kim Molvig, Erik L. Vold, Evan S. Dodd, and Scott C. Wilks
Phys. Rev. Lett. 113, 145001 — Published  1 October 2014

DOI: 10.1103/PhysRevLett.113.145001

http://dx.doi.org/10.1103/PhysRevLett.113.145001


Non-Linear Structure of the Diffusing Gas-Metal Interface

in a Thermonuclear Plasma

Kim Molvig∗,z, Erik L. Vold∗, Evan S. Dodd∗, and Scott C. Wilks‡
∗Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA

zMassachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA and
‡Lawrence Livermore National Laboratory, Livermore, California, 94550, USA}

This letter describes the theoretical structure of the plasma diffusion layer that develops from an
initially sharp gas-metal interface. The layer dynamics under isothermal and isobaric conditions is
considered so that only mass diffusion (mixing) processes can occur. The layer developes a distinctive
structure with asymmetric and highly non-linear features. On the gas side of the layer the diffusion
coefficient goes nearly to zero, causing a sharp “front”, or well defined boundary between mix layer
and clean gas with similarities to the Marshak thermal waves. Similarity solutions for the non-linear
profiles are found and verified with full ion kinetic code simulations. A criterion for plasma diffusion
to significantly affect burn is given.

PACS numbers: 28.52.Cx, 47.45.-n, 52.57.-z, 52.40.Hf, 52.25.Dg

Fusion yield degradation in ICF capsule implosions has
long been attributed to the mixing of pusher material into
the fuel as a result of hydrodynamic instabilities, tur-
bulence, and flow asymmetries that stir the fuel-pusher
interface. The hydrodynamic stirring motions provide
macroscopic interpenetration of the materials that are
eventually mixed atomically by a microscopic diffusion
process. The atomic mixing is necessary if fusion burn
reduction is to result. And yet the models in use today
[1, 2] have no dependence on plasma diffusion. It is as-
sumed that the rate limiting process is determined by the
large scale hydrodynamic cascade. Diffusion in the mix-
ing process is analogous to viscosity in the Kolmogorov
concept of eddy turbulence. The turbulent shear layer
of neutral fluids provides a simplified paradigm for how
the mix models of high density fusion are supposed to
work. A model [3] for these shear layers computes the
growth in time of the interfacial area, using scaling and
similarity arguments that extend the homogeneous tur-
bulence picture of Kolmogorov. The model [3] predicts
that interfacial area grow by a factor comparable to the
ratio of the integral scale to the dissipation scale, or

L/λK ∼ R
3/4
e . At high Re this is an enormous num-

ber. It means that an atomically mixed layer of width

∆xL ∼ LR
−3/4
e normal to the interfacial surface is suf-

ficient to fill the entire stirred volume. The scaling ar-
guments of reference [3] give the time for the interfacial
area increase as comparable to the integral scale time
τ I ∼ L/U . But in the time τ I diffusion produces a layer

width ∆xD ∼
√

DL/U ∼ L R
−1/2
e ∼ R

1/4
e ∆xL (taking

the Schmidt number of order unity), or ∆xD ≫ ∆xL.
The enormous increase in interfacial area overwhelmes
diffusion as the rate limiting factor in the overall pro-
cess.

Diffusion is fundamental to the production of gas-metal
mix. The mixed material grows in volume as the prod-
uct of interfacial surface area S and the diffusion layer

thickness ∆xD, or Vmix = S∆xD. The hydro stirred
volume is fully atomically mixed when, Vmix → V stir.
Subsequent increase of mix comes entirely from growth
of the stirred volume which does not depend on diffu-
sion. Reference [3] has this limit as always satisfied for
high Reynolds number flows provided turbulence is fully
developed. It is an open question, however, whether ICF
capsule implosions are of sufficient duration or steadi-
ness to allow turbulence to fully develop and to grow the
interfacial area to the size required in [3].

The diffusion independent picture of mix may be cor-
rect but it is not a conclusion that can be drawn from
the behavior of passive scalar mixing into a neutral fluid
shear layer. The transient ICF plasma implosion is a
far more complex situation. The interface of interest is
between two very different materials undergoing a rapid
compression and heating causing changes in state that
are extreme. Where the neutral fluid transport coeffi-
cient for viscosity, thermal conduction, diffusion and the
like are essentially constants, the plasma coefficients are
highly variable. One example is the temperature scaling
of ∼ T 5/2. A plasma implosion tracked from 30 eV to
10 keV undergoes increases in viscosity, etc. by a factor
of a million.

The first step in developing a sound physics base for
the mix layer dynamics is to understand plasma diffu-
sion. It is the purpose of this letter to work out the ba-
sic structure of this layer as it develops from an initially
sharp interface – a problem that has not previously been
studied. We focus on heavy metal pushers as used in the
double shell capsule designs [4–6].

The form of the equations of dissipative hydrodynam-
ics for plasmas has long been studied [7–10], and partial
results obtained for many of the transport coefficients.
The mass diffusion subproblem has been examined re-
cently [11–15]. The reference [15] work focuses exclu-
sively on the binary plasma mixture considered in this pa-
per and provides the complete hydrodynamic equations
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with analytic formulas for all the transport coefficients.
Diffusion is relative to the mass average fluid velocity.
The interface layer can be considered to be imbedded in
hydro flows of longer scale that produce the stirring. The
full light ion (gas) mass flux is, from reference [15],

miΓi = −yInimiDiI

(

α11

(

∇ lnxi +
(xi − yi)

niTi
∇Pi+

(zi − yi)

niTi
∇Pe +

Zeff − 1

Zeff

αT

Ti
∇Te

)

+
3

2
α12∇ lnTi

)

(1)

where the variables xj , yj , and zj denote atom, mass,
and charge fractions, respectively, with subscripts j = i
for the gas and j = I for the metal. The thermal force
transport coefficient αT is a function of Zeff and the co-
efficients α11 and α12 are functions of the ion coupling
parameter ∆I ≡

(

miZ
2
I /mI

)

(1− yi) /yi. In the isother-
mal limit examined in this paper only the concentration
gradient and baro-diffusion fluxes [16, 17] are needed.
There is general agreement on the form of these fluxes
in the citations [7–15], although only reference [15] con-
tains the explicit analytic formulas used here. The other
references would require working out some additional de-
tails. Preliminary work based on reference [11] has in fact
reproduced the structure derived here with some differ-
ences in detail [18]. The work in [12–14] can be shown to
give fluxes numerically equivalent to ours.
We consider the temperatures constant and equal

for electrons and ions. The total pressure can
then be written P = Pi + Pe = (n+ ne)T =
(ρ/mi) (2yi + (mi/mI) (ZI + 1) (1− yi)) T . Constant
total pressure results when the density varies with the
concentration according to,

ρ =
ρ0

(2yi + (mi/mI) (ZI + 1) (1− yi))
(2)

with ρ0 = P/2T a constant. As the diffusion mixing layer
evolves in time and the spatial profile yi (x) broadens, the
mass spatial profile ρ (x) must also move in accordance
with equation (2). This requires non-zero pressure forces,
since diffusion cannot cause net mass flow. Diffusion can,
however, produce pressure imbalances which then induce
mass flow [19]. Our isobaric model of the diffusion layer
assumes that the pressure will transiently depart from
its constant value and relax the mass profile according
to equation (2). This occurs on the fast, Euler, time
scale so that in analyzing the slower diffusion process
one can work with the relaxed, isobaric state. The light
ion diffusion mass flux can now be simplified to,

miΓi = −yInimiDiI

(

α11 (∆I)

(

∇ lnxi +
(zi − xi)

niTi
∇Pe

))

(3)
The gas partial mass density ρi is chosen as the sin-
gle mixture variable, dimensionless with the definition
a ≡ ρi/ρ0 so that pure gas is a = 0.5. The continuity

equation ∂ρi/∂t+∇·miΓi = 0 can be reworked with sub-
stantial “mixture algebra” to give the non-linear diffusion
equation for the mixing layer,

∂a

∂t
=

∂

∂x
D0 (dc (a) + dP (a))

∂a

∂x
(4)

where the diffusion coefficientD0 , which does not depend
on the mixture variable a, is given by,

D0 = 278
4

lnΛ

A
1/2
i T 5/2

ρ0

ZI + 1

Z2
I

cm2/sec (5)

The dimensionless order unity functions that contain
the non-linear mixture dependences are for concentration
gradient diffusion,

dc (a) =
α11 (∆I)

(1− a (2− (mi/mI) (ZI + 1))) (a (ZI − 1) + 1)
(6)

and for baro-diffusion,

dP (a) = dc (a)
a (1− 2a) (ZI − 1)

2

(ZI − a (ZI − 1))
(7)

The ionic coupling parameter ∆I can be expressed in
terms of a as ∆I = Z2

I (1− 2a) / (a (ZI + 1)).
We make the simplification of treating the Coulomb

log as constant. The theory allows lnΛ to vary between
collision pairs, lnΛ → ln Λij , and as a function of macro-
scopic parameters. The effects of strong coupling and
related processes that modify lnΛ could be treated by
exploiting this freedom. Preliminary work [18] indicates
observable effects on the layer structure.
The solution of equation (4) gives the evolution of the

diffusion layer between gas and metal. Its distinctive non-
linear structure depends on the functional dependence
of diffusion coefficient d (a) = (dc (a) + dP (a)) on gas
density as plotted in Fig. (1), where mi = 2, mI = 197,

ZI = 77, and α11 (Z) = 3π
32

288+604
√
2Z+217Z2

4(72+61
√
2Z+16Z2)

, with Z =

∆I .

FIG. 1: Diffusion coefficients for mI/mi = 197/2, and, ZI =
77; dc = green; dP = red; Total = black
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Note that the baro-diffusion component dominates
over most of the layer, but the profile asymmetry comes
from the concentration gradient term. The transition
from mixture to pure metal occurs on the left side of
the layer where, a → 0 and the diffusion coefficient
dc (0) → 1. The baro-diffusion component goes to zero
at both edges of the layer. The transition to pure gas oc-
curs at the right edge where a → 1/2 and the coefficient

dc is very small, dc → 1. 18 (mI/mi) / (ZI + 1)
2
. This is

a characteristic of highly ionized heavy elements. It will
give rise to a diffusion “front” structure to the mixing
wave evolution with a sharp transition from mixing layer
to pure gas that is in some respects analogous to the Mar-
shak thermal wave [20] whose behavior is familiar from
radiation hohlraum design.
Solutions to Eq. (4) can be found using the similarity

variable,

ξ =
x

√

2
∫ t

0
dt′D0 (t′)

(8)

which transform Eq. (4) to,

−ξ
∂a

∂ξ
=

∂

∂ξ
(dc (a) + dP (a))

∂a

∂ξ
(9)

Note that the similarity transformation is exact analyti-
cally, and valid for t > 0. It also allows for the treatment
of systems with time-varying temperature, density and
ionization state when they are spatially homogeneous
over the layer width. We will fix these quantities, and
the diffusion coefficient D0 so that, ξ = x/

√
2D0t. The

profile in the similarity variable ξ can be determined
by converting Eq. (9) into two first order equations,
and numerically solving with the standard Runge-Kutta
method (e.g. rk4 from Numerical Recipes [21]). How-
ever, the solution is found with a shooting method to
solve the boundary value problem using an initial value
solver. From ξ = 0 one can iterate on the values of a and
da/dξ until the boundary conditions are satisfied: a = 0
at ξ → −∞ and a = 1/2 at ξ → +∞ or ξ = ξf . The lo-
cation of the wave front ξf , when it exists, is not unique
until the condition of conservation of mass for the gas
diffused into the metal is applied. For an idealized diffu-
sion coefficient that goes to zero exactly at the mix layer
gas boundary, one can show analytically that the pro-
file inside the layer is linear at the location of the front,
a = 1/2−ξf

(

ξf − ξ
)

/d′, where d′ ≡ d
dad (a = 1/2) . The

transition to pure metal produces an extended gas profile
of trace amounts exponentially decaying into the metal
in the manner of a linear diffusion process.
The layer profiles are plotted in Fig. (2) as functions

of the similarity variable ξ. It should be noted that al-
though the diffusion coefficient does not go to zero (the
blue line in Fig. (2)), the metal still exhibits a well de-
fined front with clean gas to the right. Calculations for
ZI = 10 and ZI = 20 , where the diffusion coefficient was

not small as a → 1/2 , did not result in a front. Metal
profiles decayed exponentially into the gas extending to
all distances.

FIG. 2: Similarity profiles for mI/mi = 197/2 and ZI = 77.

Time-dependent numerical solutions were obtained to
confirm the self-similar profile. The diffusion Eq. (4)
is integrated in time with the profile dependent coeffi-
cients in equations (6) and (7) and with the coefficient
D0 set to one. Although non-linear, the diffusion equa-
tion is not stiff and readily solved by conventional nu-
merical methods. We confirmed the integration achieves
the same results by explicit, implicit or time-centered
(Crank-Nicolson) differencing. Results at several times,
t = 0, 20, 40, 60, and 80 are plotted in Fig. (3) using the
self-similarity variable.

FIG. 3: Time dependent numerical solutions of a v. the sim-
ilarity variable ξ for mI/mi = 197/2 and ZI = 79.

At the later times the solutions clearly overlay and
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confirm the self-similarity. At early times, t = 20, it is
evident that the non-linear diffusion solution differs from
the self-similarity profile as it evolves from the discon-
tinuous initial conditions. Self similarity (to ∼ 99%) is
achieved in the numerical integration by time t ∼ 40−50
corresponding to a scale length of 9 -10. Higher grid res-
olution would reduce this time. Small differences, seen
in the profiles as x approaches the left boundary result
from the zero flux boundary conditions at a fixed spa-
tial position starting to interfere with the spreading self
similar solution as time increases.

Simulations using the LSP code [22–24], were carried
out to provide an independent validation of the theoret-
ical results. LSP is a hybrid PIC simulation code, run
here with a nonrelativistic inertial fluid electron compo-
nent and two distinct kinetic particle ion species. Colli-
sions between ions were handled via the binary collision
model based on the method of Nambu & Yonemura [25]
with a general Spitzer collision frequency. The initial
conditions for the system included constant temperature
(Te = TD = TAl = 4 keV) for both ion species and the
electrons. The interface between the ion species at time
zero was a sharp discontinuity, with fully ionized alu-
minum at density of ρI = 18.7 g/cm−3 on the left and
fully ionized deuterium at ρi = 9.7 g/cm−3 on the right
of zero. The system was started in pressure equilibrium.
Fig. (4) displays the results of the simulation (dashed
line) compared to the theoretical predictions given above
at a time t = 0.25 n sec, when the layer width is ∼ 2 µm,
the deuteron Knudsen number is NKi ≈ 10−3 and we ex-
pect valid hydrodynamics. The theoretical predictions,
with no adjustable parameters, agreed in detail with the
simulation results. Not only was the asymmetric self-
similar density profile that was predicted above observed
in the simulation, but the diffusion coefficient value of
D0 = 7.2 µm2/n sec predicted by Eq. (5), using the same
lnΛ = 3 as LSP, agreed with the measured value found
in the simulation by fitting the profiles to the similar-
ity variable. The similarity constant from the theory for
the Al-D interface, ξf = 1.65, coincided with the front
location in the simulations.

FIG. 4: LSP simulation results (dashed) compared to theory
predictions (with no multipliers). Metal ions in red, gas ions
in blue.

Of particular significance is verification of the assump-
tion made in the theory of a fast relaxation of the pres-
sure profiles to maintain the isobaric state (and the fast,
by ∼

√

mi/me, electron thermal conduction relaxation
of the temperature profiles to maintain the isothermal
state).
Practical implications and consequences for thermonu-

clear burn can be inferred from the integral characteris-
tics of the layer. If the decaying gas profile tailing into
the metal is ignored, the layer can be defined as cen-
tered on the initial interface, ξ = 0 and extending from
ξ = −ξf to ξ = ξf . Both gas and metal profiles are close
to linear in this domain. The gas remains “clean” for
ξ > ξf which is significant for thermonuclear burn given
the large effect on opacity of even trace metal amounts.
The half layer thickness and mass of gas within this layer
are then,

∆xD = ξf
√

2D0t (10)

MgL = Sρi∆xD = Sρ0ξf
√

D0t/2 (11)

where S is the interfacial surface area. Similarly for the
metal in the layer,

MmL =
Sρ0ξf

(mi/mI) (ZI + 1)

√

2D0t (12)

and a metal to gas ratio of MmL/MgL =
2mI/mi (ZI + 1). This is the mass density ratio
for the pure materials on either side of the interface (
MmL/MgL = 2.53 for the deuterium-gold mixture we
are using as an example with ξf = 1.51).

A measure of the importance of the diffusion mix layer
for overall burn is the ratio of mix layer gas mass, MgL,
to the total gas mass in the ideal spherical volume, Mg =
4πρiR

3/3. The mix layer gas is highly interdiffused with
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metal and has much lower burn performance. We write
the interfacial area as S = fS4πR

2 to exhibit the factor
fS by which the intially spherical surface is increased due
asymmetric hydrodynamic flow. The mass ratio is then,

MgL

Mg
=

3S∆xD

4πR3
= fS

3∆xD

R
(13)

Note that for a symmetric implosion with fS = 1, the
ratio MgL/Mg exceeds 50% when the diffusion layer
grows to 20% of the cavity radius. To be more quan-
titative we take the burn time to be tB ∼ R/cs with

cs = 4.0 × 107 (T/Ai)
1/2

and get, for an equimolar DT
fuel mix,

MgL

Mg
= 0.0027fS

T

(2ρiR)1/2
(14)

For perfectly spherical fuel volumes with a robust ρR ∼ 1
g/cm2 the effect of diffusive mix will be small unless tem-
peratures approach T ∼ 100 keV. At lower temperatures
of order 10 keV a modest amount of hydrodynamic stir-
ring that increases the gas-metal interfacial area by the
factor fS ∼ 10 would produce a significant effect from
mix. Plasma diffusion can generate substantial levels of
metal mixed into fuel with much less aspheric hydrody-
namic activity than previously thought.
In a rapidly imploding ICF capsule, where plasma dif-

fusion may increase a million fold in a nanosecond, a
very different and complementary physical picture of mix
suggests itself. Hydrodynamic stirring originates from
drive asymmetries and surface instabilities that are de-
layed in development and localized in scale. Turbulence
is not fully developed. Gas-metal interfacial area in-
creases but much slower than in reference [3]. The diffu-
sive spreading and area growth of the interface are sep-
arate processes whose product is the mix volume as in
Eq. (13). Some fraction of the stirred volume is not
mixed, Vmix < Vstir . In fact, diffusion layer formation
may be negligable, Vmix ≪ Vstir , until after ignition.
Diffusion layer evolution would then proceed from an ini-
tial rapid formation ∆D ∝ t1/2 to a low velocity growth
d∆D/dt ∝ t−1/2 thereafter (behavior familiar from the
Marshak thermal waves of a hohlraum). Such a picture,
if substantiated, would make possible fully resolved sim-
ulations that used complete multi-species plasma trans-
port equations.
Some computing support for this work came from the
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