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Current experimental realizations of the quantum anomalous Hall phase in both electronic and photonic sys-

tems have been limited to a Chern number of one. In photonics, this corresponds to a single-mode one-way edge

waveguide. Here, we predict quantum anomalous Hall phases in photonic crystals with large Chern numbers of

2, 3 and 4. These new topological phases were found by simultaneously gapping multiple Dirac and quadratic

points. We demonstrate a continuously tunable power splitter as a possible application of multimode one-way

waveguides. All our findings are readily realizable at microwave frequencies.

Like the integer quantum Hall effect, the quantum anoma-

lous Hall effect (QAHE) has topologically-protected chiral

edge states with transverse Hall conductance Ce2

h
, where C is

the Chern number of the system. Unlike the integer quantum

hall effect, the electronic QAHE requires no external mag-

netic field and has no Landau levels. The first theoretical

model of the QAHE was proposed by Haldane in a honey-

comb lattice [1]. Haldane subsequently extended this elec-

tronic topological phase to photonics [2], where the Chern

number equals the number of one-way waveguide modes.

This photonic analog to the QAHE was experimentally real-

ized in a gyromagnetic photonic crystal at microwave frequen-

cies [3]. Very recently the electronic QAHE has also been

experimentally demonstrated in magnetic topological insula-

tors [4]. Although the Chern number can in principle take

arbitrary interger values, in the very large body of work on the

QAHE all photonic and electronic realizations were limited to

|C| = 1. Consequently, finding systems with |C| ≥ 1 is a fun-

damental scientific goal in studying topological phases. The

search for higher Chern numbers also has practical value. In

electronics, having more chiral edge states would greatly re-

duce the contact resistance for circuit interconnects[5, 6]. For

photonic applications, multimode one-way waveguides have

an increased mode density and coupling efficiency. In addi-

tion they enable new devices such as reflectionless waveguide

splitters, combiners or even “one-way photonic circuits”.

In this letter, we report topological photonic bandgaps of

large Chern numbers |C| = 2, 3 and 4 using ab-initio calcu-

lations. First, we describe two approaches to implement bulk

bands which have multiple pairs of Dirac cones and multi-

ple quadratic points. The simultaneous opening of these point

degeneracies generates Chern numbers of large magnitudes.

Next we present a topological gap map using the parameters

corresponding to Yittrium Iron Garnet, a common microwave

gyromagnetic material, to demonstrate that all examples in

this letter are readily realizable. Finally we put forward an

implementation of an adjustable power splitter as an illustra-

tion of a possible practical application and as a way to exper-

imentally verify the existence of the C = 2 phase. The ideas

and results presented can also be applied to other topological

photonic systems [7–13].

It is now known [14, 15] that each of the two bands con-

nected by one pair of Dirac point degeneracies can acquire

nonzero quantized Berry flux, when gapped by T -breaking.

Each Dirac point contributes π Berry flux for a total of 2π in

each band. Because 2π Berry flux is exchanged across the

bandgap, the Chern number associated with the gap, which

we call the “gap Chern number”, is ±1. A general way to cal-

culate the gap Chern number (Cgap =
∑

iCi) is to sum the

Chern numbers of all bands below the bandgap [16]. Since

a quadratic point consists of two Dirac points [17], the Berry

flux exchanged is 2π and Cgap = ±1 when the quadratic de-

generacy is gaped by T -breaking.

When an edge is formed by joining two materials with

bandgaps overlapping in frequency, the number of one-way

edge states is equal to the difference of gap Chern num-

bers across the interface [16]. If one of the materials is

topologically trivial (Cgap = 0) like metal or air, the other

gap Chern number determines the number of topologically-

protected one-way edge states. When a gapped Dirac or

quadratic point system is interfaced with a trivial bandgap,

the one-way waveguide formed is single-mode (|Cgap = 1|).
To create multimode one-way wavegudies, it is necessary to

increase the magnitude of Cgap or, equivalently, increase the

Berry flux exchanged between the bands. This requires the

involvement of more pairs of Dirac points and more quadratic

points. In the rest of this letter, we describe two strategies to

achieve this goal. [18]

Every two-dimensional (2D) photonic crystal shown in the

main text is a square lattice of gyromagnetic rods of lattice

constant a. Results for the transverse magnetic (TM) modes

are presented. The T -breaking perturbation is implemented

by applying a static magnetic field perpendicular to the 2D

plane. As a result, the gyromagnetic material develops off-

diagonal imaginary terms (µ12 = −µ21 6= 0) in the magnetic

permeability. The full-wave simulations are done using the

RF module of COMSOL Multiphysics. The Chern numbers

of a single isolated band or multiple degenerate bands are cal-

culated following the approach described in Ref. [19].

The first approach to obtain large gap Chern numbers is to

increase the symmetry of the system so that point degenera-

cies can come in large multiples at the same frequency. Under

T-breaking, the Berry flux contributed from each symmetry-

related point-degeneracy is identical to the rest. Consequently,

they add constructively, which increases Cgap. For exam-

ple, in a system of four-fold rotational symmetry (C4), Dirac

points have to come in multiples of four. For two bands con-
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FIG. 1. Bulk and edge TM bandstructures showing two one-way

edge states (Cgap = 2) obtained from four Dirac points. The pho-

tonic crystal is a square lattice of rods with a radius of 0.13a, ǫ = 13

and µ = 1. The T-breaking perturbation corresponds to adding

µ12 = −µ21 = 0.40i to the rods. a) Bulk bandstructure showing

the Dirac point along M −K. The lower inset illustrates the lattice

geometry. b) Four Dirac cones between the 4th and 5th bands plotted

in the whole Brillouin zone. c) Bulk bandstructure under T-breaking

perturbation opens a 5.5% complete gap highlighted in yellow. Each

band is labeled with its Chern number. d) Two gapless one-way edge

states (red) appear in the projected edge band diagram when the bulk

is terminated by a metallic boundary.

taining only Dirac degeneracies, the exchange of Berry flux

comes in multiples of 4π and the gap Chern numbers are even.

An example of Cgap = 2 is shown in Fig. 1. Fig. 1a and

Fig. 1b show four Dirac cones found in a system of four-fold

rotational symmetry. These Dirac cones are between the 4th

and 5th bands along the K-M line in the Brillouin zone. They

are well-isolated from other bands. In Fig. 1c and 1d we open

a complete gap by applying a T -breaking perturbation. In Fig.

1d, there are two edge states present when this bulk photonic

crystal is interfaced with a metallic boundary (a perfect elec-

tric conductor).

By increasing the four-fold rotational symmetry to six-

fold (C6) in a triangular lattice, we found six Dirac cones and

three one-way edge states (Cgap = 3). These results are pre-

sented in the supplemental material.

The second approach to obtain large gap Chern numbers is

to tune multiple symmetry-unrelated point degeneracies to oc-

cur in the same frequency range, so that when a sufficient T -

breaking perturbation is applied, a complete gap opens. Un-

like the previous case of symmetry-related degeneracies, the

Berry flux associated with gaping symmetry-unrelated degen-

eracies can either add constructively or destructively. When

all Berry fluxes are of the same sign, large Chern numbers

can occur. Using this approach, we obtained another exam-

ple of Cgap = 3 shown in the supplemental material. There,

we brought one quadratic point to a frequency in the vicinity

of four Dirac points to obtain three one-way edge states by

gapping all of them.

The example of Cgap = 4 is shown in Fig. 2. We shifted

two quadratic points to frequencies near four Dirac points.

Shown in Fig. 2a and 2b, there are four Dirac points along M -

Γ, one quadratic point at the K point and another one at the

Γ point. In Fig. 2c and 2d, the T -breaking opens a complete

gap between the 6th and 7th bands, inside which four one-way

edge states appear. The mode profiles of the four edge modes

are plotted in Fig. 2e at a chosen frequency. They have dif-

ferent decay lengths into the bulk from the metallic boundary,

determined largely by how close they are to the band edge in

the band diagram.

All the findings above are readily realizable at microwave

frequencies using gyromagnetic materials such as Yittrium

Iron Garnet (YIG), which have been used in experimental

studies of single-mode one-way edge waveguides. We note

that the examples from the prior figures do not necessarily

correspond to physical materials, since they were selected

to show clear openings of the band degeneracies. To facili-

tate the eventual experimental realizations of multimode one-

way edge waveguides, we construct, in Fig. 3, a topologi-

cal gap map of photonic crystals made of YIG rods. In the

calculation, the material properties used for the YIG rods are

µ =





0.84 0.41i 0
−0.41i 0.84 0

0 0 1



 and ǫ = 15. This corresponds to

the response of YIG at 14.5 GHz at 2020 Gauss of static mag-

netic field [20]. We scanned the radius of the YIG rods and

mapped out the frequencies of all the complete TM bandgaps

found up to the 7th bulk band. We did not find interesting

features when going through higher bands. The area of each

bandgap is colored according to its gap Chern number (Cgap).

Shown in Fig. 3, a wide range of Chern numbers are found

from -2, to +4. Negative Chern numbers represent the negative

group velocities of the corresponding one-way edge states.

We note that although the calculations here are done in 2D

for TM modes, the designs can exactly be translated to 3D

metallic waveguides in experiments [3, 21–24].

The material dispersion does not change the main features

in the map, if the material operation frequency is placed at

the center of the gap of interest. Taking into account disper-

sion from the gyromagnetic resonance [20], the widest gap for

Cgap = 2 decreased from 5.4% to 3.5%, for Cgap = 3 from
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FIG. 2. Bulk and edge TM bandstructures showing four one-way

edge states (Cgap = 4) obtained from four Dirac points and two

quadratic points. The photonic crystal is a square lattice of rods with

a radius of 0.07a, ǫ = 24 and µ = 1. The T-breaking perturba-

tion corresponds to adding µ12 = −µ21 = 0.40i to the rods. a)

Bulk bandstructure showing the Dirac point along Γ − M and two

quadratic points at Γ and K respectively. The lower inset illustrates

the lattice geometry. b) Four Dirac cones and two quadratic points

between the 6th and 7th bands plotted in the whole Brillouin zone.

c) Bulk bandstructure under T-breaking perturbation opens a 3.0%

complete gap highlighted in yellow. Each band is labeled with its

Chern number. The Chern number of degenerate bands is circled by

a dotted line. d) Four gapless one-way edge states (red) appear in

the projected edge band diagram when the bulk is terminated by a

metallic boundary. e) Mode profiles of the four edge modes close to

the metallic interfaces are plotted at the same frequency dotted in d).
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FIG. 3. The TM topological gap map of a photonic crystal consisting

of a square lattice of YIG rods under an applied static magnetic field.

The gap Chern number labels each complete bandgap found. The

previously reported single-mode one-way waveguide [3, 15] corre-

sponds to the blue bandgap of Cgap = −1. The left lower inset

illustrates the lattice geometry with a period of a. The upper right

inset illustrates a 2D one-way circuit by interfacing various photonic

crystals of different gap Chern numbers.

3.6% to 2.7%, and finally for Cgap = 4 from 2.6% to 2.1%.

Since in general there are more band crossings in higher

order bands, larger gap Chern numbers are expected to be

found there. High-order bandgaps tend to be smaller due to

the greater density of states there, so we expect to find larger

gap Chern numbers in smaller gaps. These trends are clearly

observed in Figs. 1,2, 3, and in the supplemental material.

The above multimode one-way waveguides significantly in-

crease the transport channels that are topologically protected.

We show as an example, in the appendix, a total number of

eight one-way modes inside an edge waveguide constructed

from domains of +4 and -4 gap Chern numbers. Compared

to their single-mode counterparts, these one-way multimode

waveguides have a much larger density of states which gives

a much higher input coupling efficiency.

The wide range of gap Chern numbers found in the topo-

logical gap map offers the opportunity to make a “topological

one-way circuit” [25, 26]. This idea is illustrated as an inset

of Fig. 3, where bulk domains of different gap Chern num-

bers are joined together. One-way edge states flow around

their interfaces. The number of the one-way waveguide modes

equals the difference of the gap Chern numbers across the in-

terface. At the junction between three bulk domains, one-way

edge states merge together or branch off, enabling new de-

vice functionalities as signal combiners and splitters immune

to backscattering from manufacturing imperfections.

In Fig. 4, we present a concrete design of a tunable power

splitter showcasing a possible application of the multimode

one-way waveguides. The splitter is at the junction beneath a
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FIG. 4. A power splitter implemented with Cgap = 2 and Cgap = 1

gyromagnetic photonic crystals bordered on the top by a metallic

wall. A point source with frequency a

λ
= 0.82 couples light into the

multimode waveguide to the left of the metal scatterer. The unit cell

size of the Cgap = 2 lattice is a, the unit cell size of the Cgap = 1

lattice is 0.805a and the rod radius for both lattices is 0.15a. The

operating parameters are the same as Fig. 3, so a in real units is

1.7 cm. a) For a metal scatterer with height 1.65a, the majority of

the light proceeds through channel 2 (bottom waveguide). b) For a

metal scatterer with height 1.30a, the majority of the light proceeds

through channel 1 (right waveguide). c) The transmission to each

waveguide as a function of metal scatterer height.

metal wall between two domains with gap Chern numbers of

+2 and +1. This junction couples the power from one multi-

mode waveguide on the left into single-mode waveguides on

the right (channel 1) and bottom (channel 2). A metal scat-

terer in the multimode waveguide tunes the power splitting

between channel 1 and channel 2.

In the simulations, we placed a mono-frequency point

source inside the left waveguide formed by the metal and

Cgap = 2 domain. The source excites a linear combination of

the two one-way modes. These modes propagate to the right

and are scattered by the metal scatterer. Since one-way modes

cannot backscatter, they only scatter into each other, changing

their amplitudes and phases. The height of the metal scat-

terer controls the total mode profile at the junction, and con-

sequently the power splitting between channel 1 and channel

2. In Fig. 4c, we plot the transmission into each channel as

a function of the height of the metal scatterer. Since there is

no reflection or absorption, the total power efficiency of the

splitter is always 100%. Between a metal scatterer height of

a and 2a, the transmission into each channel oscillates be-

tween nearly 0 and 1. In Fig. 4a and 4b, we present two field

profiles in which the transmission is maximized into either

channel 1 or channel 2. We found that for a gyromagentic res-

onance linewidth ∆H = 0.5Oe and a dielectric loss tangent

of 0.0002, that the attenuation length in the system varied be-

tween 100a and 400a depending on the modal profile. These

attenuation distances are much longer than the dimensions of

the device we propose here.

In the above tunable splitter, we placed the metal scatterer

far away from the junction so the tuning from the metal scatter

and the splitting at the junction are spatially seperated. This

type of tuning is only possible when the scatterer is inside

a multimode waveguide. If the left waveguide had only one

mode, the metal scatterer could not have changed the field

distribution at the junction, because the mode profile in a

single-mode one-way waveguide cannot be changed by any

scatterers far away. Therefore the experimental realization of

the above tunable splitter can verify the existance of the large

Chern number.

In conclusion, we predicted photonic analogs of the QAHE

with large Chern number (up to 4) and constructed multimode

one-way edge waveguides (up to 8 modes). The implementa-

tions are readily experimentally realizable using a square lat-

tice of YIG rods at microwave frequencies. Using the discov-

ered multimode one-way waveguides, we also predicted an

adjustable power splitter with unity efficiency. Since the first

demonstration of the quantum (anomalous) Hall phase in pho-

tonic crystals, there have been a wide range of theoretical [26–

32] and experimental [21–24] efforts to investigate systems

with single-mode one-way edge states. We expect our findings

of large Chern numbers and multimode one-way waveguides

to create even wider opportunities in topological photonics.

Finally, our approach to create topological bandgaps of large

Chern numbers can also be applied to electronic systems.
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