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Background: Symmetries in nature offer very simple descriptions of complex systems. Partial
Dynamical Symmetries can considerably broaden their relevance. Purpose: To present the first
extensive test of a PDS for nuclei. Method: We compare an SU(3) PDS to γ to ground band B(E2)
values for 47 deformed nuclei. Results: The parameter-free PDS is found to be quite successful,
but with characteristic discrepancies. Conclusions: Symmetry remnants are more pervasive than
heretofore realized, and the SU(3) PDS gives new insights into collective models (e.g., IBA). If
these reproduce the PDS, they reflect finite size effects. Differences from the PDS point to SU(3)
configuration mixing.

PACS numbers: 21.60.Fw,21.10.Re,21.60.Ev,27.70.+q

Symmetries in nature are widespread and fundamen-
tal to modern science. In complex systems, Dynamical
Symmetries (DSs) [1] – or spectrum-generating algebras
– define specific quantum numbers and selection rules,
and provide analytic, often parameter-free, predictions
of energies and transition rates. They aim at describing
the astonishingly regular and simple patterns exhibited
by complex many-body correlated systems. A DS occurs
when the Hamiltonian can be written in terms of Casimir
operators of a group and its sub-groups. Successive terms
in the Hamiltonian introduce specific quantum numbers,
and break a degeneracy of a higher group.

A very successful application of DSs arises in atomic
nuclei in the context of the Interacting Boson Approxi-
mation Model (IBA) [1] which describes collective nuclei
in terms of pairs of valence nucleons forming bosons with
angular momentum 0-~ (s bosons) and 2-~ (d bosons) and
their interactions. The parent group for the IBA is U(6)
and it has non-trivial DSs U(5) [for vibrational nuclei],
SU(3) [axially symmetric deformed nuclei], and O(6) [γ
soft axially asymmetric deformed nuclei]. A few empir-
ical manifestations of nuclei close to each of these have
been proposed (see, e.g., Ref. [2]). However, the vast
majority of nuclei deviate from any DS. The DSs thus
serve mainly as idealized benchmarks and as basis states
for diagonalizations of model Hamiltonians. Recently,
though, the proposal of Partial Dynamical Symmetries
(PDSs) [3] and Quasi Dynamical Symmetries (QDSs) [4],
which break the DSs while preserving important sym-
metry remnants, suggests a potentially more widespread
role of symmetries in nuclei. However, only one empirical
manifestation of a PDS based on SU(3) has been identi-
fied [5], namely in 168Er, where analytic, parameter-free,
PDS predictions agree very well with both the data and
with multi-parameter numerical symmetry-breaking cal-
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culations. Is this accidental or does this PDS describe a
broad range of nuclei? If so, this could enhance the appli-
cability of symmetries to nuclei and other complex sys-
tems such as atoms, molecules, clusters and crystals [6–
9].

It is therefore the purpose of this Letter to present the
first extensive test of this PDS by studying E2 transi-
tion rates covering 47 even-even nuclei in the rare earth
region. We find that the PDS is quite successful and dis-
cuss both the agreement with the data and characteristic
discrepancies, the role of finite system size, how the PDS
relates to broken symmetry numerical calculations, and
how the latter can now be better understood.

SU(3) is a dynamical symmetry describing a nucleus
with axially symmetric prolate quadrupole deformation.
The level scheme consists of sequences of rotational bands
labeled by quantum numbers: λ, µ and K, where λ and
µ specify the SU(3) representation (family of levels) and
K is the projection of the total angular momentum on
the symmetry axis. The ground state (g.s.) band has
K= 0 and the first excited representation has two rota-
tional bands. Except for very small K admixtures due
to the Elliott-Vergados [10] transformation, these latter
have K= 0 (beta, β band) and 2 (gamma, γ band). States
in the β and γ bands with equal angular momenta are
degenerate [e.g., E(2+β )= E(2+γ )].

The E2 operator that is a generator of SU(3) is given

as T(E2)SU(3) = (s†d + d†s) -
√
7/2(d†d)(2) in terms of

s and d boson creation and destruction operators. This
gives the important selection rule ∆(λ,µ)= 0. That is,
SU(3) predicts vanishing B(E2) values from the β and γ
bands to the g.s. band.

Clearly such a model cannot describe most deformed
nuclei since the β and γ bands are highly non-degenerate
and they both (especially the γ band) have collective
transitions to the g.s. band. Indeed, these empiri-
cal deviations from SU(3) have long inspired successful
symmetry-breaking numerical IBA calculations [11–13].

The SU(3) PDS of Leviatan [5] presents an alternate
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FIG. 1: (Color online) Comparison of PDS predictions (cal-
culated for the appropriate boson number) with the data on
relative γ band to g.s. band E2 transitions in several de-
formed nuclei. The red (black) bars are the data [14] (PDS
predictions). One transition is normalized to 100 for each ini-
tial state. The symbol < on a red bar signifies an upper limit
(usually because of unknown E2/M1 mixing ratio).

.

approach. It is a special realization of the IBA Hamilto-
nian, given by Eq. (2) of Ref. [5], whose key features are
that the degeneracy of the β and γ bands is broken but
a strict SU(3) structure is nevertheless preserved for the
γ and g.s. bands. No such SU(3) structure is preserved
for the β band or other states.

One would think this would immediately rule out the
PDS as a viable description since SU(3) forbids E2 transi-
tions between the γ and g.s. bands. However, T(E2)SU(3)

is not the most general E2 operator. Indeed, one can
write T(E2)= (s†d + d†s) -

√
7/2 (d†d)(2) + θ(s†d +

d†s)= T(E2)SU(3) + θ(s†d + d†s). The first term does
give vanishing E2 transitions from the γ to the g.s. band,
but the second gives finite contributions.

If we consider relative interband B(E2) values – ratios
of B(E2) values from a γ band state to two states in the
g.s. band – we obtain:
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FIG. 2: (Color online) Similar to Fig. 1, for transitional nuclei.

B(E2 : Jγ → J
′

gr)

B(E2 : Jγ → J
′′

gr)
=

< J
′

gr |θ(s†d+ d†s)|Jγ >2

< J
′′

gr |θ(s†d+ d†s)|Jγ >2
. (1)

Note that θ cancels and therefore these PDS B(E2)
ratios are parameter-free. Yet the PDS has been shown
to give very good agreement with the data for γ to g.s.
band B(E2) values in the well-studied nucleus 168Er (see
Ref. [5], and Fig. 1 and Table I in the present work).
Our aim is to assess if this intriguing result is an

anomaly or widespread. To do this, we investigated 47
rare earth region nuclei from Sm to Hg. The β-γ splitting
can always be fit by varying the strengths of two terms
in the PDS Hamiltonian without affecting γ to g.s. band
B(E2) values. The critical test is thus if γ to g.s. band
B(E2) values can be reproduced while preserving SU(3)
character for these states. In 22 of the 47 nuclei there
are sufficient E2 transition data.
Figure 1 shows a number of examples of the compar-

isons for a wide range of nuclei from Gd to Os. In the
other nuclei, the comparisons are generally similar. For
each nucleus, the relative interband γ band to g.s. band
B(E2) values are shown. We also give the R4/2 value
(R4/2 ∼ 3.33 for axial rotor nuclei) and valence nucleon
number, Nval, counting to the nearest closed shell using
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TABLE I: Detailed results for 168Er. The table shows relative
γ to g.s. transitions for the data, the Alaga rules [15], the
PDS [5], the WCD IBA calculations [12], and the CQF IBA
calculations [13]. For each initial state, the transition with
the largest Alaga value is set to 100.

Ii
π
→If

π 168Er ALAGA PDS WCD CQF
2γ

+
→ 0+ 56.2(11) 70 64.3 66 54

2γ
+

→ 2+ 100 100 100 100 100
2γ

+
→ 4+ 7.3(4) 5 6.3 6 8

3γ
+

→ 2+ 100 100 100 100 100
3γ

+
→ 4+ 62.6(14) 40 49.3 48 69

4γ
+

→ 2+ 19.3(4) 34 28.1 30 18
4γ

+
→ 4+ 100 100 100 100 100

4γ
+

→ 6+ 13.1(12) 8.64 12.5 12 16
5γ

+
→ 4+ 100 100 100 100 100

5γ
+

→ 6+ 123(14) 57.1 79.6 72 125
6γ

+
→ 4+ 11.2(10) 26.9 20.3 23 9

6γ
+

→ 6+ 100 100 100 100 100
6γ

+
→ 8+ 37.6(72) 10.6 18.0 17 20

the standard magic numbers 50, 82, and 126. The up-
per left panel is for 168Er and recapitulates the Leviatan
results [5].

Overall, the parameter-free SU(3) PDS predictions ac-
count very well for these key data in a wide variety of
deformed nuclei (and, with two parameters, also for γ-β
degeneracy breaking and intraband B(E2) values [16]).
Note that 186Os lies at the beginning of a transitional
region, has an R4/2 as low as 3.16 and yet also shows

reasonable agreement. Data from the decay of the 5+γ
level in 184W would be useful.

Interestingly, the main discrepancies are systematic:
In most cases, the PDS significantly underestimates the
spin-increasing transitions and overestimates the spin-
decreasing transitions (the nucleus 168Yb is an exception
for the spin-increasing transitions from the even spin ini-
tial states.) Figure 2 shows that the agreement in Fig. 1
is not trivial. It gives the comparisons for shape transi-
tional nuclei, 152Sm and 154Gd at the N= 90 spherical-
deformed shape transition, and 180Os, and 188Os in a
region with gamma softness and decreasing quadrupole
deformation. The SU(3) PDS is not expected to work for
such nuclei and, indeed, all exhibit large disagreements.

Table I, a compilation and correction of information
from Refs. [5, 12, 13], along with updated data, summa-
rizes the experimental relative B(E2) values for 168Er. It
also includes the Alaga rules [15], which assume only a
separation of intrinsic and rotational motion, and initial
and final states with pure K values of 0 and 2, the PDS
predictions, and results of two numerical IBA calcula-
tions that break SU(3). One of these, WCD [12], was
the first IBA calculation for a deformed nucleus. The
other used a revised approach, the Consistent Q Formal-
ism (CQF) [13], which is simpler, has one fewer param-
eter, and agrees better with these data than the PDS or
the WCD (this is most dramatic for the 5+γ level). Fig-

ure 1 and Table I show that the PDS is in very good
agreement with widespread data and also very similar
to the WCD IBA calculations [12] for 168Er. However,
the data are systematically further from the benchmark
Alaga rules than the PDS and WCD, and the CQF cal-
culations agree better with the data. These points will
turn out to be very instructive.

These comparisons of the PDS with the data, the Alaga
rules, and numerical IBA calculations pose two funda-
mental questions: Why do the PDS predictions, which
also have pure K values for the γ and g.s. bands, differ
from the Alaga rules, and how can such seemingly differ-
ent descriptions as the SU(3) PDS and broken-symmetry
(WCD) numerical IBA calculations be simultaneously
successful and so similar. Understanding this will give in-
sights into the nature of the PDS predictions and into the
effects of symmetry-breaking in collective models which
have been the backbone of successful treatments of col-
lective even-even nuclei for decades.

The answer to the first question lies in the nature
of the IBA model (and hence the PDS) as a valence

space model in which the number of valence nucleons
is conserved and whose predictions are valence nucleon-
number-dependent [1]. The differences between the PDS
and the Alaga rules are in fact solely due to valence
nucleon-number-dependent effects, as can be seen from
the SU(3) matrix elements of the θ term in T(E2) for γ
to g.s. band transitions (see Ref. [1], p. 55). The suc-
cess of the PDS is perhaps the most striking, systematic,
evidence for such effects so far discovered and leads to a
new understanding of IBA calculations.

To address this second issue, we consider the discrepan-
cies that do occur. These latter, as noted, are systematic.
Consider the γ to ground Alaga rules. They are always
small for spin-increasing transitions. The reason is sim-
ple. Consider 2+γ to 4+1 transitions. The 4+1 state has
zero intrinsic angular momentum and 4~ units of rota-
tional angular momentum. The 2+γ level is dominated by
2~ units of intrinsic (vibrational) angular momentum and
zero units of rotational angular momentum. An E2 tran-
sition connecting them primarily changes the rotational
angular momentum by 4~ and is highly suppressed.

Simple models can often be improved by introducing
configuration mixing. In deformed nuclei, γ-ground band
mixing is a well-established phenomenon [17]. Such mix-
ing adds coherent components to the transition matrix
elements that can be either constructive or destructive.
However, in the special case of unperturbed transitions
that are forbidden, an added component, regardless of
sign, can only increase the B(E2) value. Hence the dis-
agreements between the PDS and the data in Fig. 1 and
Table I for spin-increasing transitions are clear signatures
that such a simple model cannot account for missing per-
turbations.

Thus, if numerical IBA calculations differ from the
PDS (that is, differ from what would be expected due
solely to finite number effects), those differences are a
measure of mixing effects. Any of the nuclei we have
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studied can show this but we use the results for 168Er in
Table I as a convenient example since it has been a stan-
dard test bench for collective models of deformed nuclei.
Thus we conclude that the numerical WCD IBA results
(which are almost identical to the PDS) must contain
quite weak ∆K= 2 mixing effects for these interband
transitions. Though noted previously [5, 12, 13], this
weak mixing has not been generally recognized.
Now consider the later CQF calculations (Table I)

which deviate further from the Alaga rules and which
are in better agreement with the data than the PDS
and the WCD calculations. From the previous discus-
sion, this implies that they contain stronger symmetry-
breaking, that is, stronger mixing of SU(3) configurations
[this is also evident from an expansion of the wave func-
tions in an SU(3) basis and a bandmixing analysis (see
Refs. [13, 18])] and establishes that this mixing plays a
complementary role to finite nucleon number effects in
actual nuclei. Thus, we see that a comparison of Alaga
rules, PDS, and numerical calculations gives us a tool to
disentangle the effects of finite valence nucleon number
and symmetry-breaking contributions in calculations of
axially deformed atomic nuclei. The upshot is a better
understanding of decades of collective model calculations
that highlights the balance of valence nucleon number ef-
fects and mixing in manifestations of collectivity.
To summarize, we have presented the first extensive

test of a Partial Dynamical Symmetry and shown that it
accounts very well for an abundance of data (degeneracy
breaking of the γ and β bands and γ to g.s. B(E2) values)

in a widespread survey of axially deformed atomic nuclei,
although it does not completely account for the differ-
ences between interband B(E2) values and geometrical
models of pure intrinsic states (Alaga rules). The dif-
ferences of the PDS from geometrical expectations stem
from finite nucleon number effects, and are, in fact, the
most direct evidence for their importance in collective
nuclei. Further, numerical IBA calculations can be dis-
sected in terms of nucleon number and specific band mix-
ing effects, the latter directly reflected in deviations of
predicted γ to g.s. band B(E2) values from the PDS.
The better agreement with these data of the CQF cal-
culations than the PDS or earlier calculations, especially
in spin- increasing γ to g.s. band transitions, signals the
need for mixing effects that are absent from the PDS.

The present results suggest a much wider applicabil-
ity of dynamical symmetries, that the IBA triangle is
suffused with important elements of symmetry, and en-
courage detailed tests of other PDSs (see Ref. [19] for
examples). They also point more generally to the com-
plementary roles of constituent number and configuration
mixing in the rise of collectivity in finite interacting sys-
tems.
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