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We report on the first complete calculation of the KL −KS mass difference, ∆MK , using lattice
QCD. The calculation is performed on a 2+1 flavor, domain wall fermion (DWF) ensemble with a
330 MeV pion mass and a 575 MeV kaon mass. We use a quenched charm quark with a 949 MeV
mass to implement Glashow-Iliopoulos-Maiani (GIM) cancellation. For these heavier-than-physical
particle masses, we obtain ∆MK = 3.19(41)(96) × 10−12 MeV, quite similar to the experimental
value. Here the first error is statistical and the second is an estimate of the systematic discretization
error. An interesting aspect of this calculation is the importance of the disconnected diagrams, a
dramatic failure of the OZI rule.

INTRODUCTION

The KL −KS mass difference ∆MK , with a value of
3.483(6) × 10−12 MeV [1], is an important quantity in
particle physics which led to the prediction of the en-
ergy scale of the charm quark nearly fifty years ago [2–4]
and whose small size places strong constraints on possible
new physics beyond the standard model. This mass dif-

ference is believed to arise from K0-K
0
mixing caused by

second-order weak interactions. However, because ∆MK

is suppressed by 14 orders of magnitude compared to the
energy scale of the strong interactions and must involve
a change in strangeness of two units, this is a promis-
ing quantity to reveal new phenomena which lie outside
the standard model. A quantity closely related to ∆MK

is the indirect CP violation parameter ǫK , which arises
in the same mixing process. The experimental values of
∆MK and ǫK are both known very accurately, making
the precise calculation of ∆MK and ǫK within the stan-
dard model an important challenge.

As an example of new physics, consider a process which
occurs with unit strength but at a very high energy scale
Λ and which changes strangeness by two units. Such
a process might be represented at low energies as the
∆S = 2, four-fermion operator 1

Λ2 sdsd where s and d
are operators creating a strange quark and destroying
a down quark, respectively. Establishing the validity of
the standard model prediction for ∆MK at the 10% level
would then provide a lower bound on Λ: Λ ≥ 104 TeV –
an energy scale four orders of magnitude greater than is
effectively available in present laboratory experiments.

In perturbation theory, the standard model contribu-
tion to ∆MK is separated into short distance and long
distance parts. The short distance part receives the
largest contribution from momenta on the order of the
charm quark mass. In the recent NNLO perturbation
theory calculation of Brod and Gorbahn [5], the NNLO

terms were found to be as large as 36% of the leading or-
der (LO) and next-to-leading order (NLO) terms, raising
doubts about the convergence of the perturbation series
at this energy scale. At present the long distance part
of ∆MK is even less certain, with no available results
with controlled errors because the long-distance contribu-
tions are non-perturbative. However, an estimate given
by Donoghue et al. [6] suggests that the long distance
contributions may be sizable.

The calculation of ǫK is under much better control,
because it is CP violating and the largest contribution
involves momenta on the scale of top quark mass, where
perturbation theory should be reliable. However, the
same NNLO difficulties in predicting the charm quark
contribution to ǫK enters at the 8% level [5]. In addition
the long distance contribution to ǫK is estimated to be
3.6% by Buras et al. [7], again suggesting the need for a
reliable, non-perturbative method. Here long- and short-
distances refer to the space-time separation between the
two point-like, ∆S = 1 weak operators which enter the
calculation of ∆MK or ǫK when the internal loop mo-
menta are much less than the W boson mass. Conven-
tionally separations on the scale of 1/ΛQCD are referred
to as “long-distance”.

Lattice QCD provides a first-principles method to com-
pute non-perturbative QCD effects in electroweak pro-
cesses, in which all errors can be systematically con-
trolled. We have proposed a lattice method to com-
pute ∆MK and ǫK [8, 9]. An exploratory calculation of
∆MK [10] has been carried out on a 2+1 flavor, 163×32,
DWF ensemble with an unphysically large, 421 MeV pion
mass. We obtained a mass difference ∆MK which ranged
from 6.58(30)×10−12 MeV to 11.89(81)×10−12 MeV for
kaon masses varying from 563 MeV to 839 MeV. This
exploratory work was incomplete since we included only
a subset of the necessary diagrams.

In this letter, we report on a full calculation, including
all diagrams, with a lighter pion mass, larger volume and
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improved statistics. The large lattice spacing and un-
physical quark masses used in the calculation presented
here prevent the resulting ∆MK from being viewed as
a test of the standard model. However, this calculation
demonstrates that a realistic lattice calculation of ∆MK

should be possible within a few years. This calculation of
amplitudes containing two effective weak operators rep-
resents an important advance in lattice technique and
should allow future calculation of long distance effects in
rare kaon decays and, possibly, heavy quark processes.

EVALUATION OF ∆MK

We begin by summarizing the lattice method for eval-
uating ∆MK [10]. The essential step is to integrate the
time-ordered product of two first-order weak Hamiltoni-
ans over a fixed space-time volume:

A =
1

2

tb
∑

t2=ta

tb
∑

t1=ta

〈0|T
{

K
0
(tf )HW (t2)HW (t1)K

0
(ti)

}

|0〉.

(1)
A class of diagrams contributing to this integrated cor-
relator is represented schematically in Fig. 1. After in-
serting a sum over intermediate energy eigenstates and
summing explicitly over t2 and t1 in the interval [ta, tb]
one obtains:

A = N2
Ke−MK(tf−ti)

∑

n

〈K0|HW |n〉〈n|HW |K0〉
MK − En

·
(

−T − 1

MK − En

+
e(MK−En)T

MK − En

)

. (2)

Here T = tb − ta + 1 is the time extent in lattice units
of the integration volume and NK a known normaliza-

tion factor associated with the interpolating operatorK
0
.

The differences ta− ti and tf − tb are assumed to be suffi-

ciently large that only physical K
0
and K0 states appear

in the initial and final states. The coefficient of the term
proportional to T in Eq. (2) provides a result for ∆MK :

∆MK = 2
∑

n

〈K0|HW |n〉〈n|HW |K0〉
MK − En

. (3)

The exponential terms coming from states |n〉 with En >
MK in Eq. (2) are exponentially decreasing as T in-
creases. These terms are negligible for sufficiently large
T . For our small spatial volume and heavier than phys-
ical pion mass, there will be exponentially increasing
terms coming from only π0 and vacuum intermediate
states. We evaluate the matrix element 〈π0|HW |K0〉
and subtract this π0 exponentially increasing term ex-
plicitly from Eq. (2). We also perform a subtraction for
the η state where the exponential decrease with increas-
ing T may be insufficient for it to be neglected. This

has a less than 10% effect on the final result. For the
vacuum state, we add a pseudo-scalar density, sγ5d, to
the weak Hamiltonian to eliminate the matrix element
〈0|HW + cssγ

5d|K0〉. Since this pseudo-scalar density
can be written as the divergence of an axial current, the
final, physical mass difference will not be changed by
adding this term. After the removal of these exponen-
tially increasing terms, a linear fit at sufficiently large T
will determine ∆MK .

d
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u
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FIG. 1. One type of diagram contributing to A in Eq. (1).
Here t2 and t1 are integrated over the time interval [ta, tb],
represented by the shaded region.

The ∆S = 1 effective Hamiltonian used in this calcu-
lation is

HW =
GF√
2

∑

q,q′=u,c

VqdV
∗

q′s(C1Q
qq′

1 + C2Q
qq′

2 ) (4)

where Vqd and Vq′s are Cabibbo-Kobayashi-Maskawa
(CKM) matrix elements while {Qqq′

i }i=1,2 are current-
current operators, defined as:

Qqq′
1 = s̄iγ

µ(1− γ5)diq̄jγ
µ(1− γ5)q′j

Qqq′
2 = s̄iγ

µ(1− γ5)dj q̄jγ
µ(1− γ5)q′i .

(5)

Since the Wilson coefficients C1 and C2 are calculated
from the standard model in the continuum, we must
relate our lattice operators to corresponding operators
normalized in a continuum scheme. We do this non-
perturbatively using the Rome-Southampton, regular-
ization invariant (RI) renormalization scheme [11]. At
present C1 and C2 have been computed to NLO in the
MS scheme [12]. We use a perturbative calculation of
Lehner and Sturm, extending to our four-flavor case the
results given in Ref. [13], to convert these MS values for
C1 and C2 into the RI scheme.
There are four types of diagrams, shown in Fig. 2, that

contribute to four-point correlator given in Eq. (1). In
our previous work [10], we included only the first two
types. All diagrams are included in the present calcula-
tion. The disconnected, type 4 diagrams are expected to
be the dominant source of statistical noise.

DETAILS OF THE CALCULATION

This calculation is performed on a lattice ensemble
generated with the Iwasaki gauge action and 2+1 fla-
vors of domain wall fermions [14, 15]. The space-
time volume is 243 × 64 and the inverse lattice spacing
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FIG. 2. The four types of diagram contributing to the mass
difference ∆MK . The shaded circles are the ∆S = 1 weak
Hamiltonians. The black dots represent the kaon sources.

a−1 = 1.729(28) GeV. The fifth-dimensional extent is
Ls = 16 and the residual mass is mres = 0.00308(4) in
lattice units. The light and strange sea quark masses are
ml = 0.005 and ms = 0.04, corresponding to pion and
kaon masses Mπ = 330 MeV and MK = 575 MeV. A va-
lence charm quark with mass mMS

c (2 GeV) = 949 MeV
provides GIM cancellation. We use 800 gauge configura-
tions, separated by 10 time units.

We refer to Fig. 1 to explain how this four point func-
tion is evaluated. We use Coulomb-gauge wall sources
for the kaons. These two kaon sources are separated in
time by 31 lattice units. The two weak Hamiltonians are
separated by at least 6 time units from the kaon sources
(ta−ti and tf−tb ≥ 6) so that the kaon interpolating op-
erators will project onto physical kaon states. For type 1
and type 2 diagrams, we use the strategy of Ref. [10]: 64
propagators are computed using a point source on each
of the 64 time slices. The first of the two weak Hamil-
tonian densities is located at this point. The propaga-
tors obtained with this point source are used to connect
that Hamiltonian to the second Hamiltonian which can
be summed over the full space-time region between ta and
tb. For type 3 and type 4 diagrams, we use 64 random
wall source propagators to construct the quark loops. In
order to reduce the noise coming from the random num-
bers, we use 6 sets of random sources for each time slice,
color and spin. Thus, 4608 such random source propaga-
tors are computed for each gauge field configuration. All
the diagrams are averaged over all 64 time translations.
For the light quark propagators, we calculate the lowest
300 eigenvectors of the Dirac operator and use low mode
deflation to accelerate the light quark inversions.

RESULTS

The results for the integrated correlators are shown in
Fig. 3. The three curves correspond to the three different
operator combinations: Q1 ·Q1, Q1 ·Q2 and Q2 ·Q2. The
numbers are bare lattice results without any Wilson coef-

ficients or renormalization factors. All the exponentially
increasing terms have been removed from the correlators,
so we expect a linear behavior for sufficiently large T .
When T becomes too large, the errors increase dramat-
ically as should be expected since the disconnected di-
agrams have an exponentially decreasing signal-to-noise
ratio. The straight lines correspond to linear fits to the
data points in the range [7, 20]. The χ2/d.o.f given in the
figure suggest that these fits describe the data well.

Another method to check the quality of these fits is to
plot the effective slope, in analogy to the effective mass
plots used when determining a mass from a correlation
function. The effective slope at a given time T is cal-
culated using a correlated linear fit to three data points
at T − 1, T and T + 1. In Fig. 4 we plot the effec-
tive slopes for the three different operator combinations.
The horizontal lines with error bands give our final fit-
ting results. For each operator combination we get good
plateaus starting from T = 7.
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FIG. 3. Integrated correlators for the three products of oper-
ators Q1 · Q1, Q1 · Q2 and Q2 · Q2. The three lines give the
linear fits to the data in the time interval [7, 20].

We have also tried different fitting ranges to see if
our results depend sensitively on these choices. We var-
ied two parameters: the lower limit on the linear fit-
ting range Tmin and the minimum separation between
the kaon sources and weak Hamiltonians ∆min. We first
fixed ∆K = 6 and varied Tmin from 7 to 9. The results
are given in Table. I. While the central value of the fit-
ting results is quite stable, the errors are sensitive to the
choice of Tmin, which is caused by the disconnected dia-
grams. In Table. II, we give the results for fixed Tmin = 7
but ∆K varying from 6 to 8. Both the central values and
the errors are very stable, suggesting that a separation
of 6 is large enough to suppress excited kaon states.

To check the calculation and refine our strategy for
treating the exponentially growing single pion and vac-
uum contributions, we have varied the coefficient of the
sγ5d term described above and introduced the similar sd
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FIG. 4. Effective slope plots for the three products of opera-
tors Q1 ·Q1, Q1 ·Q2 and Q2 ·Q2.

TABLE I. Results for the mass difference from each of the
three operator products for different choices of Tmin but with
∆K fixed at 6. All the masses are in units of 10−12 MeV.

∆K Tmin Q1 ·Q1 Q1 ·Q2 Q2 ·Q2 ∆MK

6
7 0.68(10) -0.18(18) 2.69(19) 3.19(41)

8 0.68(10) -0.11(20) 2.85(24) 3.42(48)

9 0.68(11) -0.18(25) 2.69(34) 3.18(63)

TABLE II. Fitting results for the mass difference from each
of the three operator products for different choices of ∆K but
with Tmin = 7. All the masses are in units of 10−12 MeV.

Tmin ∆K Q1 ·Q1 Q1 ·Q2 Q2 ·Q2 ∆MK

7
6 0.68(10) -0.18(18) 2.69(19) 3.19(41)

7 0.68(10) -0.20(18) 2.64(19) 3.13(41)

8 0.67(10) -0.19(18) 2.61(19) 3.09(41)

operator . Each operator is a total divergence and when
added to HW should not change ∆MK . In fact, ∆MK

did not change within errors as the coefficient of sd was
varied. We omit this term, since this gives the smallest
statistical error. In contrast, ∆MK is very sensitive to
sγ5d. If this term is omitted, the resulting exponentially
growing vacuum contribution is two orders of magnitude
larger than the previous linear term — too large to be ac-
curately subtracted. Thus, we must use the sγ5d term to
remove the vacuum intermediate state at the beginning.

In our previous work [10], only the first two types of di-
agrams were included in the calculation. We can now de-
termine the importance of these terms in our complete re-
sult. The contributions of the type 1 and 2 diagrams have
small statistical errors and the coefficient of T can be ac-
curately determined from a linear fit using Tmin = 12. In
Tab. III, we give the contribution to the three operator
products from the type 1 and type 2 diagrams alone as

well as the complete result. ∆MK decreases by approx-
imately a factor of two when the complete result is ob-
tained, showing that there is large cancellation between
the type 1 and 2 and the type 3 and 4 diagrams. Since
the type 3, “double penguin”, graphs contribute less than
10% to the final result, we find an unusually large contri-
bution from the disconnected, type 4 diagrams. This is
a surprisingly large failure of the“OZI suppression” [16],
naively expected for these disconnected diagrams.

TABLE III. Comparison of mass difference from type 1 and 2
diagrams only with that from all diagrams. All the numbers
here are in units of 10−12 MeV.

Diagrams Q1 ·Q1 Q1 ·Q2 Q2 ·Q2 ∆MK

Type 1,2 1.479(79) 1.567(36) 3.677(52) 6.723(90)

All 0.68(10) -0.18(18) 2.69(19) 3.19(41)

CONCLUSIONS AND OUTLOOK

We have carried out the first, complete lattice QCD
calculation of ∆MK . However, our result is for a case
of unphysical kinematics with pion, kaon and charmed
quark masses of 330, 575 and 949 MeV respectively, each
quite different from their physical values of 135, 495 and
1100 MeV. Our results is:

∆MK = 3.19(41)(96)× 10−12 MeV. (6)

Here the first error is statistical and the second an
estimate of largest systematic error, the discretization
error which results from including a 949 MeV charm
quark in a calculation using an inverse lattice spacing of
1/a = 1.73 GeV . This 30% estimate for the discretization
error can be obtained either by simple power counting,
(mca)

2 = 0.30, or from the failure of the calculated en-
ergy of the ηc meson to satisfy the relativistic dispersion
relation. We find (E2

ηc
(p)− p2)/p2 = 0.740(3) instead of

1.0 when evaluated at p = 2π/L.
Our result for ∆MK agrees well with the experimental

value of 3.483(6)×10−12 MeV. However, since we are not
using physical kinematics, this agreement could easily be
fortuitous. We emphasize that the objective of this first
complete calculation is not a physical, standard model
result for ∆MK that should be compared with experi-
ment but instead a demonstration that such a complete
calculation is possible with controlled statistical errors.
To perform a calculation with physical kinematics and

controlled systematic errors, two difficulties must be over-
come. First, we need to perform the calculation on a four-
flavor lattice ensemble with two or more, smaller lattice
spacings. This would remove the difficult-to-estimate er-
ror associated with quenching the charm quark and allow
the O(m2

ca
2) discretization errors to be removed. Second,
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we must perform a finite volume correction associated
with π − π re-scattering which will be needed for phys-
ical kinematics, when the two-pion threshold lies below
the kaon mass. In this case, ∆MK in infinite volume con-
tains the principal part of the integral over the two-pion
relative momentum, which can be substantially different
from a finite-volume momentum sum. A generalization of
the Lellouch-Luscher method has been devised to correct
this potentially large finite volume effect [8] and a more
general method has been presented in Ref. [17]. Note,
in future physical calculations with L ≈ 6 fm there will
be only one such two-pion state with energy well below
MK , contributing to ∆MK on the few percent level.
Similar techniques can be used to determine the long

distance contribution to ǫK . However, the calculation of
ǫK involves two additional complexities described in Ap-
pendix A of Ref. [10]. First, we must introduce new QCD
penguin operators representing top quark effects. Sec-
ond, an overall, logarithmic divergence must be removed
from the lattice calculation using non-perturbative meth-
ods. In summary, a full calculation of ∆MK and ǫK ,
including their long distance contributions, should be ac-
cessible to lattice QCD with controlled systematic errors
within a few years, substantially increasing the impor-
tance of these quantities in the search for new phenomena
beyond the standard model.
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