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Abstract

It was shown by F. Low in the 1950s that the subleading terms of soft photon S-
matrix elements obey a universal linear relation. In this paper we give a new interpre-

tation to this old relation, for the case of massless QED, as an infinitesimal symmetry

of the S-matrix. The symmetry is shown to be locally generated by a vector field

on the conformal sphere at null infinity. Explicit expressions are constructed for the

associated charges as integrals over null infinity and shown to generate the symmetry.

These charges are local generalizations of electric and magnetic dipole charges.
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1 Introduction

Soft theorems can be reinterpreted as symmetries of the S-matrix for which the soft particles

are Goldstone modes [1–3]. A priori, there is no guarantee that the resulting symmetry takes

any simple or local form. However, for the case of the soft graviton theorem [4], the symmetry

turns out to be a diagonal subgroup of the product group of BMS [5] diffeomorphisms acting

on past and future null infinity [3]. There is also a subleading soft graviton theorem [6],

which is equivalent to a Virasoro symmetry at null infinity [7–9]. For the leading soft photon

theorem, the resulting symmetry was very recently shown to be the infinite-dimensional

subgroup of U(1) gauge transformations which approach the same angle-dependent constant

at either end of any light ray crossing Minkowski space [10]. In this paper we consider the

subleading soft photon theorem, specializing to massless QED.1

It has been known since the work of Low [11, 12], Burnett-Kroll [13] and Gell-Mann-

Goldberger [14] that the subleading, as well as the leading, term of soft photon absorption

or emission is universal; see equation (3.2) below. In the massless case loop corrections are

in general expected [15–17], but we will not consider their effects here. We re-express the

subleading soft relation as a symmetry acting on in- and out-states. However, unlike all

the cases mentioned above, the resulting symmetry is not a subgroup of the original gauge

symmetry.2 It acts locally on the conformal sphere at I where it is parameterized by a

vector field Y . However it is bilocal in advanced or retarded time. As already noted in [16],

the bilocal form is reminiscent of the Yangian appearing in N = 4 gauge theories, but we

1This specialization is made, as in [10], to avoid dealing with singularities in the conformal compactifica-
tion of past and future timelike infinity in the massive case.

2We expect this also to be the case for the subsubleading soft graviton theorem.
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have not found a precise relation. There may also be a connection to the ‘extra’ conserved

quantities of Newman and Penrose [18]. If Y is one of the global SL(2, C) rotations, the

symmetry implies global magnetic dipole charge conservation. Having a generic Y is a local

generalization of this, in the same sense that supertranslations (superrotations) are local

generalizations of global translations (rotations) in the gravity case.

We wish to stress that, despite the precise formulae presented, the nature and significance

of the symmetry remains largely mysterious to us. It is not a subgroup of the gauge group

and, unlike the cases considered in [1,10] does not come under the usual rubric of asymptotic

symmetries. Moreover, the infinitesimal symmetry generators do not commute and their

commutators give yet more symmetries. We do not know whether or not a finite version of

the symmetry transformation exists. The presence of so many symmetries would ordinarily

imply integrability, but it is highly implausible that all abelian theories with massless charges

are integrable. Another possibility is that there is no simple extension to massive QED, and

loop corrections in the massless case somehow eliminate the symmetries. Despite all these

uncertainties, our formulae seem of interest and are presented here in the hope that further

investigations can put them into proper context!

This paper is organized as follows. In section 2 we give our conventions, the mode

expansion for the U(1) gauge field and define both the leading and subleading soft operators.

In section 3 we review the subleading term in Low’s soft photon theorem, and then rewrite

it as a symmetry of the S-matrix. We construct the associated charges and show that their

actions on the fields reproduce the infinitesimal symmetries. The charges are first presented

as integrals over all of past or future null infinity, and then, in section 4, are shown to reduce

to boundary expressions after using the gauge constraints. This is surprising as they are not

gauge symmetries! Finally we discuss the connection to dipole charges.

2 Preliminaries

In this section we collect essential formulae and introduce our conventions. For more details

see [10].

2.1 Classical equations

Flat Minkowski coordinates (x0, x1, x2, x3) are given by

x0 = u+ r = v − r,
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x1 + ix2 =
2rz

1 + zz̄
,

x3 =
r(1− zz̄)

1 + zz̄
, (2.1)

where u (v) is retarded (advanced) time. In retarded (advanced) coordinates, the metric is

ds2 = −du2 − 2dudr + 2r2γzz̄dzdz̄ = −dv2 + 2dvdr + 2r2γzz̄dzdz̄, (2.2)

with γzz̄ is a round metric on the unit S2. In terms of Fµν = ∂µAν − ∂νAµ and matter

current jMν the Maxwell equations in retarded coordinates are

−γzz̄r
2∂uFru + ∂zFz̄u + ∂z̄Fzu + ∂r(γzz̄r

2Fru) = e2γzz̄r
2jMu ,

∂zFz̄r + ∂z̄Fzr + ∂r(γzz̄r
2Fru) = e2γzz̄r

2jMr ,

r2∂r(Frz −Fuz)− r2∂uFrz + ∂z(γ
zz̄Fz̄z) = e2r2jMz .

(2.3)

A similar expression applies to advanced coordinates.

2.2 Mode expansions

The mode expansion for the outgoing free Maxwell field is

Aout
µ (x) = e

∑

α=±

∫

d3q

(2π)3
1

2ωq

(

εα∗µ (~q)aoutα (~q)eiq·x + εαµ(~q)a
out
α (~q)†e−iq·x) , (2.4)

where q0 = ωq = |~q|, α = ± are the two helicities and

[aoutα (~q), aoutβ (~q′)†] = 2ωqδαβ(2π)
3δ3 (~q − ~q′) . (2.5)

Outgoing photons with momentum q and helicity α correspond to final-state insertions of

aoutα (~q). They arrive at a point w on the conformal sphere at I+. It is convenient to

parametrize the photon four-momentum by (ωq, w, w̄)

qµ =
ωq

1 + ww̄
(1 + ww̄, w + w̄, i (w̄ − w) , 1− ww̄) , (2.6)

with polarization tensors

ε+µ(~q) = 1√
2
(w̄, 1,−i,−w̄) ,

ε−µ(~q) = 1√
2
(w, 1, i,−w) .

(2.7)
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These obey ε±µqµ = 0 and

ε+z̄ (~q) = ∂z̄x
µε+µ (~q) =

√
2r (1 + zw̄)

(1 + zz̄)2
, ε−z̄ (~q) = ∂z̄x

µε−µ (~q) =

√
2rz (w − z)

(1 + zz̄)2
. (2.8)

We define the boundary field on I+ by

Az̄(u, z, z̄) = lim
r→∞

Aout
z̄ (u, r, z, z̄) = lim

r→∞
∂z̄x

µAout
µ (u, r, z, z̄). (2.9)

This is related to the plane wave modes by

Az̄ = e lim
r→∞

∂z̄x
µ
∑

α=±

∫

d3q

(2π)3
1

2ωq

(

εα∗µ (~q)aoutα (~q)e−iωqu−iωqr(1−cos θ) + h.c.
)

(2.10)

where θ is the angle between between the ~x and ~p. At large r the leading saddle point

approximation near θ = 0 gives

Az̄ = −ieε̂+z̄

8π2

∞
∫

0

dωq(a
out
− (ωqx̂)e

−iωqu − aout+ (ωqx̂)
†eiωqu). (2.11)

Here, x̂ is parameterized by (z, z̄)

x̂ ≡ ~x

r
=

1

1 + zz̄
(z + z̄, i(z̄ − z), 1− zz̄) (2.12)

and

ε̂+z̄ =
∂z̄x

µ

r
ε+µ =

√
2

1 + zz̄
. (2.13)

One may also check that in the gauge (2.7), Au = lim
r→∞

∂ux
µAout

µ vanishes on I+ and hence

Fuz̄(u, z, z̄) = ∂uAz̄(u, z, z̄). Using (2.11), a similar mode expansion for Az, and the commu-

tation relations (2.5) the I+ commutator is

[

Fuz̄(u, z, z̄), Fu′w(u
′, w, w̄)

]

=
ie2

2
δ2(z − w)∂uδ(u− u′). (2.14)

Similarly, defining the field A−
z̄ on I− by

A−
z̄ = −ieε̂+z̄

8π2

∞
∫

0

dωq(a
in
− (ωqx̂)e

−iωqv − ain+ (ωqx̂)
†eiωqv), (2.15)
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gives
[

Gvz̄(v, z, z̄), Gv′w(v
′, w, w̄)

]

=
ie2

2
δ2(z − w)∂vδ(v − v′), (2.16)

where Gvz = ∂vA
−
z .

2.3 Soft photon operators

We would now like to construct the operators corresponding to soft photon insertions on I+

and I−. To examine the soft limit of the above mode expansions, we define

F ω
uz̄ ≡

∫

dueiωu∂uAz̄

= − e
4π
ε̂+z̄

∞
∫

0

ωqdωq[a
out
− (ωqx̂)δ(ω − ωq) + aout+ (ωqx̂)

†δ(ω + ωq)].
(2.17)

For ω > 0 only the first delta-function contributes, while for ω < 0 only the second:

F ω
uz̄ = − e

4π
ε̂+z̄ ωa

out
− (ωx̂),

F−ω
uz̄ = − e

4π
ε̂+z̄ ωa

out
+ (ωx̂)†,

(2.18)

with ω > 0 in both cases. Similarly on I−

Gω
vz̄ = − e

4π
ε̂+z̄ ωa

in
− (ωx̂),

G−ω
vz̄ = − e

4π
ε̂+z̄ ωa

in
+ (ωx̂)

†.
(2.19)

The zero mode of Fuz̄ is defined as

F 0
uz̄ ≡ 1

2
lim
ω→0

(F ω
uz̄ + F−ω

uz̄ )

= − e
8π
ε̂+z̄ lim

ω→0
[ωaout− (ωx̂) + ωaout+ (ωx̂)†],

(2.20)

while on I−

G0
vz̄ ≡ 1

2
lim
ω→0

(Gω
vz̄ +G−ω

vz̄ )

= − e
8π
ε̂+z̄ lim

ω→0
[ωain− (ωx̂) + ωain+ (ωx̂)†].

(2.21)

As in [7], it is useful to define operators which create subleading soft photons, insertions of

which automatically have the soft pole projected out. These are given on I+ by

F
(1)
uz̄ ≡

∫

du u∂uAz̄

= − lim
ω→0

i
2
(∂ωF

ω
uz̄ + ∂−ωF

−ω
uz̄ )

= ie
8π
ε̂+z̄ lim

ω→0
(1 + ω∂ω)[a

out
− (ωx̂)− aout+ (ωx̂)†],

(2.22)

5



while at I−

G
(1)
vz̄ ≡

∫

dv v∂vA
−
z̄

= − lim
ω→0

i
2
(∂ωG

ω
vz̄ + ∂−ωG

−ω
vz̄ )

= ie
8π
ε̂+z̄ lim

ω→0
(1 + ω∂ω)[a

in
− (ωx̂)− ain+ (ωx̂)†].

(2.23)

3 Soft theorem → symmetry

In this section we rewrite the subleading soft theorem as an asymptotic symmetry acting

on in- and out-states. Let us denote a state with n massless hard particles of energies Ek,

charges eQk and momenta

p
µ
k =

Ek

1 + zkz̄k
(1 + zkz̄k, zk + z̄k, i (z̄k − zk) , 1− zkz̄k) , (3.1)

by |z1, ...〉, and hard S-matrix elements by 〈zn+1, ...|S|z1, ...〉. The Low-Burnett-Kroll-Goldberger-

Gell-Mann soft theorem [11–14,19–21] then states that if we add to the out-state a positive

helicity photon with energy ω → 0, the first two terms in the soft expansion are

〈zn+1, ...|aout− (~q)S|z1, ...〉 = (J (0)− + J (1)−)〈zn+1, ...|S|z1, ...〉+O(ω). (3.2)

Here

J (0)− = e
∑

k

Qk

pk · ε−
pk · q

∼ O(ω−1), J (1)− = −ie
∑

k

Qk

qµε
−
ν J

µν
k

pk · q
∼ O(ω0), (3.3)

with Jkµν the total angular momentum operator of the kth particle. In [10] it was shown

that the leading J (0) term implies a symmetry under large gauge transformations which

approach an arbitrary angle dependent gauge transformation at null infinity. Here we wish

to understand the subleading J (1) term. For this purpose it is convenient to eliminate the

J (0)− contribution using the projection operator (1 + ω∂ω)

lim
ω→0

(1 + ω∂ω)〈zn+1, ...|aout− (~q)S|z1, ...〉 = J (1)−〈zn+1, ...|S|z1, ...〉. (3.4)

From (2.20) one then has

eε̂+z̄ J
(1)−〈zn+1, ...|S|z1, ...〉 = eε̂+z̄ lim

ω→0
(1 + ω∂ω)〈zn+1, ...|aout− (~q)S|z1, ...〉

= −8πi〈zn+1, ...|F (1)
uz̄ S|z1, ...〉.

(3.5)
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For the special case of a scalar field with Jkµν = −i
(

pkµ
∂

∂pν
k

− pkν
∂

∂p
µ
k

)

, rewriting (pµk , q
µ) in

terms of (Ek, zk, z̄k) in (3.3) gives for the right hand side of (3.5)

J (1)− = −e
∑

k

Qk√
2(z̄k − z̄)

[

(1 + zz̄k)∂Ek
+ E−1

k (z − zk)(1 + zkz̄k)∂zk
]

. (3.6)

This is nonlocal on the conformal sphere. However acting with two covariant derivatives

gives the local expression

D2
z(ε̂

+
z̄ J

(1)−) = 2πe
∑

k

Qk

(

Dzδ
2(z − zk)∂Ek

+ E−1
k δ2(z − zk)∂zk

)

. (3.7)

Acting with D2
z on both sides of the soft theorem and integrating the result against an

arbitrary vector field Y z gives

∫

d2z D2
zY

zeε̂+z̄ lim
ω→0

(1 + ω∂ω)〈zn+1, ...|aout− (~q)S|z1, ...〉
= −2πe2

∑

k

Qk

(

DzY
z(zk)∂Ek

−E−1
k Y z(zk)∂zk

)

〈zn+1, ...|S|z1, ...〉.
(3.8)

For spinning fields we need to replace Y z∂z by the Lie derivative LY . For a hermitian action

we should include ε̂−z and Y z̄ but we suppress this for notational brevity. Similarly for the

insertion of an incoming soft photon

−
∫

d2z D2
zY

zeε̂+z̄ lim
ω→0

(1 + ω∂ω)〈zn+1, ...|Sain+ (~q)†|z1, ...〉
= −2πe2

∑

k

Qk

(

DzY
z(zk)∂Ek

−E−1
k Y z(zk)∂zk

)

〈zn+1, ...|S|z1, ...〉.
(3.9)

Let us define soft photon operators

Q+
S = − 2

e2

∫

d2zdu u∂uAz̄D
2
zY

z, (3.10)

Q−
S =

2

e2

∫

d2zdv v∂vA
−
z̄ D

2
zY

z. (3.11)

Hard particle symmetry operators Q±
H are defined by their action

〈E, z|Q+
H = −iQ (DzY

z∂E − E−1Y z∂z) 〈E, z|, (3.12)

Q−
H |E, z〉 = iQ (DzY

z∂E −E−1Y z∂z) |E, z〉. (3.13)
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Finally we write

Q± = Q±
S +Q±

H . (3.14)

Then the subleading soft theorem for massless QED takes the form

〈zn+1, ...|Q+S − SQ−|z1, ...〉 = 0. (3.15)

This expresses the subleading term in Low’s theorem as an infinitesimal symmetry of the

massless QED S-matrix.

4 Charges

In this section we express the operators Q±, for the case of scalar charged fields, as integrals

over local fields on I±. The fact that this is possible is perhaps surprising as the factor of

E−1 in (3.12) suggests time nonlocality.

A massless scalar field has an expansion near I+

Φ(u, r, z, z̄) =
φ(u, z, z̄)

r
+

∞
∑

n=0

φn(u, z, z̄)

rn+2
. (4.1)

The commutation relation for the boundary field at I+ is

[φ(u, z, z̄), φ̄(u′, w, w̄)] = −iγzz̄

4
Θ(u− u′)δ2(z − w), (4.2)

where Θ(x) is the sign function. The boundary charge current is

JM
µ = iQ lim

r→∞
r2(Φ̄∂µΦ− Φ∂µΦ̄) = iQ(φ̄∂µφ− φ∂µφ̄). (4.3)

Expressing Q+
H in terms of current operators gives

Q+
H =

∫

I+

d2zdu(uDzYz̄J
M
u + Yz̄J

M
z ). (4.4)

Using (4.2) as well as
i

π

∫

e−iEu

E + iε+
dE = 1 + Θ(u), (4.5)
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one finds the desired action on the Fourier transform φE =
∫

du eiEuφ of φ to be

[Q+
H , φE(z, z̄)] = iQ

(

DzY
z∂E − E−1Y z∂z

)

φE(z, z̄). (4.6)

Similarly on I−

Q−
H = −

∫

I−

d2zdv(vDzYz̄J
M
v + Yz̄J

M
z ) (4.7)

generates the hard action (3.13) on incoming massless scalars. It is likely possible to gener-

alize the construction to spinning fields but we have not worked out the details.

Using the constraint equations (2.3), one can eliminate the matter charge currents and

express the combined hard and soft charges as a boundary term. On I+

Q+ = lim
r→∞

1

e2

∫

I+

dud2z∂u
(

uDzY
z(r2Furγzz̄ + Fzz̄) + 2r2Yz̄Fzr

)

. (4.8)

For the field configurations that revert to vacuum at I+
+ this reduces to the S2 integral

Q+ = − lim
r→∞

1

e2

∫

I+

−

d2z
(

uDzY
z(r2Furγzz̄ + Fzz̄) + 2r2Yz̄Fzr

)

. (4.9)

Similarly on I−

Q− = lim
r→∞

1

e2

∫

I−

+

d2z
(

vDzY
z(r2F−

vrγzz̄ −F−
zz̄) + 2r2Yz̄F−

zr

)

. (4.10)

It is interesting to compare these to the expressions for the electric and magnetic charges Q

and Q̃ and the dipole moments ~℘ and ~µ:

e2Q + 2πiQ̃ = lim
r→∞

∫

d2z (r2Fruγzz̄ + Fzz̄) (4.11)

−e2 ~℘+ 2πi~µ = lim
r→∞

3

∫

d2z r2Fzr∂z̄x̂. (4.12)

We see that if we take Y to be a global SL(2, C) rotation and use the boundary condition

Fzz̄=0 from [10],3 Q± are nothing but the total magnetic dipole charge. This is ‘conserved’

in the sense that, given that the system begins and ends in the vacuum, the total incoming

dipole charge must equal the total outgoing dipole charge. More generally, Q± are local

generalizations of dipole charge in the same sense that supertranslations (superrotations)

are local generalizations of global translations (rotations). Hence the conservation law that

3For such rotations, Y is real and hence entails nonzero Y
z̄ which we have been suppressing.
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implies Low’s subleading soft theorem may be heuristically thought of as the equality of

total incoming and total outgoing dipole charge flux at every fixed angle.
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