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Abstract

The linear stability of multiple coherent laser beams with respect to two-plasmon–decay insta-

bility in an inhomogeneous plasma in three dimensions has been determined. Cooperation between

beams leads to absolute instability of long-wavelength decays, while shorter-wavelength shared

waves are shown to saturate convectively. The multibeam, absolutely unstable form has the lowest

threshold for most cases considered. Nonlinear calculations using a three-dimensional extended

Zakharov model show that Langmuir turbulence created by the absolute instability modifies the

convective saturation of the shorter-wavelength modes, which are seen to dominate at late times.
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The parametric resonance of oscillators or waves is an effect that exists in areas of physics

as diverse as geophysical fluid dynamics and galactic dynamics. Instabilities caused by the

parametric excitation of waves in plasmas resulting from the presence of large-amplitude

electromagnetic waves are of immediate concern to inertial confinement fusion (ICF) [1, 2],

high-energy-density physics (HEDP), [3] and ionospheric modification experiments [4]. Most

theoretical and numerical works to date have assumed that instability is driven by a single

electromagnetic (EM) pump wave, despite the fact that almost all ICF and HEDP ex-

periments overlap many beams. Recent indirect-drive experiments on the National Ignition

Facility (NIF) (where 96 beams overlap near each of the two laser entrance holes of a plasma

filled hohlraum) are examples that highlight the importance of cooperative, multiple-beam

parametric instability. In these experiments a multiple-beam parametric instability known

as cross-beam energy transfer (CBET) was shown to have a dramatic effect on implosion

symmetry and target performance [5, 6]. In direct-drive ICF, where the fusion target is

directly irradiated by many overlapping laser beams, two-plasmon decay (TPD) can occur.

This problem has been studied for 40+ years, but there has been a strong resurgence of

interest because of ignition-scale experiments on the NIF. TPD is important because it can

generate hot electrons, which represent a preheat risk to the target [7]. TPD is a three-wave

decay instability in which an EM wave of frequency ω0 and wave vector ~k0 decays into two

electrostatic Langmuir waves (LW’s), satisfying the resonance conditions ω0 = ω + ω′ and

~k0 = ~k + ~k′, where ω, ω′ and ~k, ~k′ are the frequencies and wave vectors of the decay LW’s,

respectively. This instability can occur in the coronal plasma at electron densities close to

the quarter-critical density nc/4, where nc[= meω
2
0/(4πe

2)] is the electron density at which

EM waves are reflected. Here, e and me are the electron charge and mass, respectively.

A linear three-dimensional (3-D) numerical stability analysis of TPD in an inhomogeneous

plasma driven by multiple laser beams is presented. This is followed by an investigation of

the subsequent nonlinear evolution, where nonlinearity enters by the coupling of the LW’s

to low-frequency density perturbations. This model was in part motivated by a favorable

comparison of the results with more-detailed, fully kinetic calculations in regimes where they

can be compared (i.e., in two spatial dimensions) [8]. The results have completely revised

our understanding of this multiple beam parametric instability. The existence of two forms

of cooperative multiple-beam TPD instability is demonstrated. One form shares short-

wavelength, high-group-velocity, cooperative (or common) LW’s that convectively saturate
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(i.e., the waves undergo a finite spatial amplification) [9], while the other is associated with

shared long-wavelength, small-group-velocity LW’s and is absolutely unstable (i.e., the waves

grow in time). The identification of an absolutely unstable cooperative mode of instability

is a new discovery. Furthermore, it is shown to have the lowest threshold in most cases.

The presence of absolute instability with a low threshold renders the TPD an inherently

nonlinear problem, the evolution of which is essentially different in three dimensions (all

previous calculations were performed in 2-D).

The linear stability of multibeam TPD can be investigated by solving a linearized equation

for the envelope of the electrostatic field [10, 11]:

∇ ·
[

2iωpe(Dt + νe◦) + 3v2e∇
2 − ω2

peδN/n0

]

~E1 =

N
∑

i=1

e

4me

∇ · [∇( ~E0,i · ~E
∗
1)−

~E0,i∇ · ~E∗
1 ]e

−iΩit + SE. (1)

The quantity ~E1 is the complex temporal envelope of the real electrostatic field ~E =

1/2[ ~E1(~x, t) exp(−iωpet) + c.c.], where enveloping is carried out at the plasma frequency

ωpe = (4πn0e
2/me)

1/2 evaluated at the density n0 = 0.23nc for numerical convenience. In

Eq. (1), Dt ≡ (∂t + ~u0 · ∇) is the convective derivative for a plasma with the flow velocity

~u0 (Plasma flow is a subdominant effect giving rise to a 10% to 15% increase in absolute

threshold for a Mach-1 flow. For simplicity we assume ~u0 = 0). In the absence of EM

pump waves, the free solutions to Eq. (1) are LW’s that propagate in a density profile whose

deviation from n0 is given by δN (δN ≪ n0). [It has been assumed that the inhomogeneity

is linear (δN = n0 x/Ln) and the direction of its gradient defines the x axis.] LW’s of wave

number k have the group velocity Vg = 3kv2e/ωpe, where ve =
√

Te/me is the electron ther-

mal velocity, and their amplitudes damp at the rate νe = νcoll + γL, which is the sum of the

collisional νcoll and Landau damping γL contributions. The EM field corresponding to the

incident laser light is enveloped at the carrier frequency 2ωpe and further decomposed into

N , coherent, linearly polarized plane waves ~E0 =
∑N

i=1
~E0,i exp i(~k0,i · ~x − Ωit) having fre-

quencies ω0,i, wave vectors ~k0,i =
ω0,i

c

√

1− n0/nck̂0,i, and intensities Ii = c| ~E0,i|
2/(8π). The

quantity Ωi = ω0,i − 2ωpe represents the mismatch for each beam, where max(|Ωi|) ≪ 2ωpe.

The first term on the right-hand side of Eq. (1) is the longitudinal part of the nonlinear

current, which is the origin of TPD. The term SE is a time-random-phase Čerenkov noise
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FIG. 1. The LW spectrum 〈|E1(kx, ky, kz = 0, t)|2〉t averaged over times t = 2.4 to 4.2 ps (a) and

t = 12.0 to 15.0 ps (b). The two EM wave vectors ~k0,1 (green arrow), ~k0,2 (white arrow), and their

polarization vectors lie in the plane shown (kz = 0) (i.e., p polarization). The dashed green (white)

hyperbolas correspond to the maximum single-beam homogeneous growth rate for beam 1 (2) and

the red circle is the Landau cutoff |~k|λDe = 0.25 (see text for parameters).

source that is implemented as described in Russell et al. [11] for homogeneous plasma. The

results are not sensitive to the precise level.

A series of numerical calculations were carried out to solve Eq (1) on a uniform 1024 ×

512×512 Cartesian grid (in the x, y, and z directions, respectively) using a 3-D generalization

of the spectral method that has been described previously [10, 11]. In these calculations, the

electron temperature and density scale length were held constant (Te = 2 keV, Ln = 150 µm),

while the total overlapped intensities Itot (≡
∑N

i=1 Ii) was varied for various configurations

of N = 1, 2, 4, and 6 beams of 0.351-µm-wavelength light in CH plasma (〈Z〉 = 3.5,

〈Z2〉 / 〈Z〉 = 5.3). For each beam configuration, the single beam intensities Ii and frequencies

ω0,i were taken to be equal to one another, and the beam wave vectors were distributed

symmetrically to fall on the surface of a right circular cone with a 27◦ half-angle whose cone

axis is parallel to the x direction. (see inset to Fig. 2). This choice of wave vectors was

made because beams are distributed in well-defined cones on large laser systems such as

OMEGA [12] and the NIF [13]. The simulation box length in the density-gradient direction

(x) was chosen to include densities in the range of 0.19 to 0.27 nc (Lx = 52 µm). The length

in the two transverse dimensions was chosen to be Ly = Lz = 26 µm.

Two plasmon decay can be absolutely [14] or convectively unstable. [15] Absolute insta-

bility corresponds to unstable eigenmodes that grow temporally, while convective instability

is limited to finite spatial amplification [16–18]. The threshold intensity for the onset of
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absolute instability is found by first extracting the growth rate of the most-unstable mode,

which does not saturate convectively, for a range of intensities and then finding the intensity

corresponding to zero growth by extrapolation.

Figure 1(a) shows a two-dimensional slice of the LW intensity spectrum |E1(~k, t)|
2 in

the kz = 0 plane during the linear growth phase (averaged over times t = 2.4 to 4.2 ps) for a

two-beam (N = 2) calculation. The EM wave vectors and electric field vectors (polarization)

of the two beams lie in this plane, which is the plane of maximum growth. The overlapped

intensity Itot = 6×1014 W/cm2 was chosen to be above the numerically determined threshold

for absolute growth. In the figure, the bright “doublets” at the spectral locations centered

on wave vectors ~k ≈ (0.8,±0.4, 0) k0 and ~k ≈ (0, 0, 0) correspond to temporally unstable

(growing) decay modes that are resonant at ne = 0.245nc. This occurs even though each

beam is individually below the threshold for absolute growth [19]. This cooperative mode of

absolutely unstable TPD is analogous to the absolutely unstable modes seen in single-beam

TPD, where the pump decays into one LW with ~k ∼ ~k0 and another with ~k = ±~k⊥, where

|~k⊥| ≪ |~k0|. In the two-beam case, cooperation occurs because the long-wavelength decays

near ~k ≈ (0, 0, 0) can be shared between beams. The other local maxima in |E1(~k, t)|
2 located

near ~k = (1.5, 0, 0) k0 and ~k = (−0.6,±0.4, 0) k0 are convectively saturated decays that are

resonant at ne = 0.238nc. These correspond to convective multiple-beam common waves

that have been described previously [9, 20] and the “triad” modes discussed in Refs. 8,

21, and 22. The convective gain is greatest for spectral locations where the single-beam

homogeneous growth-rate curves (dashed hyperbolas in Figs. 1) intersect [the maxima at

~k = (−0.6,±0.4, 0) k0 correspond to the daughter waves that are not shared]. The maximum

convective gain over all possible decay modes at the absolute threshold intensity has been

computed numerically by estimating the enhancement of the saturated wave intensity above

the steady-state noise level supported by SE in Eq. (1). The behavior described above for

two beams is quite generic. Figure 2 shows |E1(~k, t)|
2 on the planes ky = 0 and kz = 0

for a four-beam calculation for the same plasma conditions as in Fig. 1. The beams are

polarized within x − y plane and predominantly in the y direction (the projections of ~E0,i

on the y − z plane are parallel to each other, signified by the symbol “‖”) as shown in

the inset. The absolutely unstable modes are not restricted to a single plane. The bright

spectral features near ~k = (1.0, 0,±0.4) k0 and ~k = (−0.2,±0.2, 0) k0 are again absolute

multiple-beam modes. The other features in the spectrum are convectively saturated. The
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FIG. 2. Slices of the LW spectrum 〈|E1(~k, t)|
2〉t (averaged over times t = 1.0 to 2.0 ps) in the

planes ky = 0 and kz = 0 for a four-beam calculation (‖ polarization). The beam geometry and

polarization are shown in the inset.

red circles indicate the Landau cutoff.

The thresholds for cooperative absolute TPD instability for various configurations of

N = 1, 2, 4, and 6 beams are summarized in Fig. 3. For each configuration, there are

multiple possibilities for the polarization state: “p” and “s” correspond to the one- and

two-beam configurations, where the polarization is in, or out of, the plane of incidence,

respectively; “rad” and “tan” refer to the polarizations where the projections of the electric

field vectors on y − z plane are either radially or tangentially oriented with respect to the

circle that forms the base of the cone containing the beam wave vectors (see inset to Fig. 2);

the state signified as “‖” has been defined above. The thresholds have been quantified by

normalizing the intensity of an individual beam for a given configuration Is = Itot/N by

the independent (single beam) absolute threshold given by Simon et al. [19]. For one

beam (N = 1) at normal incidence (θ = 0◦), the Simon threshold [19] is recovered (as

expected). [Notice that the threshold is lowered when the angle of incidence is increased to

θ = 27◦ (triangular marker for N = 1 in Fig. 3). The effect of oblique incidence was not

described in Ref. 19 and we defer a discussion of this effect to a future publication.] The

cooperative nature of the instability is revealed forN = 2: for both s- and p-polarizations the

individual (single) beam intensity at threshold (Is)thr is significantly lower than the expected
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FIG. 3. Normalized single-beam threshold intensities (Is)thr for absolute instability with irradiation

by N beams of incidence angle θs = 27◦ (except where indicated) for various polarization states (see

text). The red numbers are the maximum convective gains evaluated at the absolute threshold.

independent beam value (dashed line) — the importance of the effect increasing with the

number of beams. If the daughter waves were shared exactly, the N beams would act as a

single beam with N-times the single beam intensity (see the solid curve in Fig. 3). Rotating

the polarizations of the two beams so as to be orthogonal (“⊥” in Fig. 3) eliminates the

cooperation. The overlapping beams are parametrically unstable (absolutely) even though the

threshold intensity for individual beams is not exceeded. The solid curve indicates maximum

cooperation (where the collection of beams effectively act as a single beam with the combined

intensity). Shown in red are the numerically estimated maximum gains of the convectively

saturated common waves (cf., e.g., Fig. 1(a)) at an intensity corresponding to the absolute

threshold. These gains are consistent with earlier work [9, 15, 23]. In most cases, this gain G

is small (G <
∼ 2π) meaning that the threshold for the cooperative absolute instability is lower

than that for the convective common waves. The regime of linear spatial amplification is

therefore very restricted. Above the absolute threshold there exists a competition between

the two modes of cooperative instability, which can only be addressed by a nonlinear theory.

The dominant mechanisms thought to be responsible for the nonlinear saturation of

TPD (weak turbulence effects such as the Langmuir decay instability (LDI) [8, 24], profile

modification [8], and the strong turbulence effects of cavitation and LW collapse [11]) are

7



TC11177J1

101.5

100.6

10–0.2

10–1.0

10

5

0

20

30
0.19 0.21 0.23 0.25

25

15

x (µm)

ne /nc

T
im

e 
(p

s)

50403020100

10

t (ps)

20 30

102

101

100

10–1

FIG. 4. The transverse averaged LW intensity 〈| ~E1|
2〉y,z(x, t) as a function of the x coordinate

(initial density, upper axis) and time. The white lines mark the time windows corresponding to

Fig. 1(a) and (b). The inset shows the temporal dependence of 〈| ~E1|
2〉⊥(x, t) at the locations

x = 26µm (black dashed line) x = 31µm (red dashed line), and x = 36µm (blue dashed line).

accounted for by the substitution δN → δN+δn in Eq. (1), where the low-frequency plasma

response δn evolves according to

[

D2
t + 2νi ◦Dt − c2s∇

2
]

δn =
Z

16πmi

∇2(| ~E1|
2 +

1

4
| ~E0|

2). (2)

Here cs = (ZTe/mi)
1/2(1 + 3Ti/ZTe)

1/2 is the speed of ion-acoustic waves whose amplitudes

damp with the rate νi, where mi, Ti, and Z are the ion mass, temperature, and charge,

respectively. The first and second terms on the right-hand side describe the low-frequency

ponderomotive forces of Langmuir and electromagnetic fluctuations. Together, Eq. (1), the

substitution δN → δN + δn, and Eq. (2) constitute the extended Zakharov model of TPD,

previously described in Refs. 10, 11, 22, and 25, and now generalized to three dimensions. In

the context of this turbulence model where the initial ion-acoustic noise is negligible [i.e., no

noise term in Eq. (2)], three regimes of cooperative TPD behavior have been identified: (1)

Ĩ [≡ Is/(Is)thr] < 1 [(Is)thr is the single beam threshold for cooperative absolute instability

(Fig. 3)] where the LW spectrum is dominated by large-k common waves whose intensities

are amplified spatially by a gain, which is numerically determined to be small G <
∼ 3 to 5

(red numbers in Fig. 3) and consistent with the standard Rosenbluth expression [9]; (2)

Ĩ ≫ 1 — all unstable modes grow and saturate nonlinearly (the nonlinear development in

this case has been described in terms of cavitating Langmuir turbulence and investigated in

Ref. [8, 21, 22]); and (3) the intermediate regime Ĩ >
∼ 1. The intermediate regime is of direct
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relevance to spherical and planar target experiments on the Omega Laser Facility [9, 26, 27]

and it displays interesting physical effects.

Figure 4 shows the nonlinear temporal evolution of the LW intensity for the two-beam

p-polarized case in the intermediate regime (Ĩ >
∼ 1) (same parameters as Fig. 1). The other

cases shown in Fig. 3 exhibit very similar behavior and are not shown. The transverse (y, z)

average of the LW intensity 〈| ~E1|
2〉⊥(x, t) is shown as a function of x coordinate and time. At

early times, growth is linear. The LW Fourier spectrum during this phase (indicated by the

lower shaded region) is shown in Fig. 1(a). The previously identified absolute and convective

cooperative modes occur at different spatial locations (densities) as indicated by the blue and

red dashed lines at ne/nc = 0.245, 0.238 in the figure, respectively. The blue (red) dashed

vertical lines indicate the evolution of the absolute (convective) modes as a function of time

(see inset). At approximately t = 5 ps, the absolutely unstable modes saturate nonlinearly,

producing large density profile modifications and radiating large amplitude LW’s. These

waves propagate down the density profile [toward lower densities (smaller x)] with time,

generating a region of turbulence (consistent with previous studies) whose effects can be

seen in the figure. When this turbulence reaches a particular location, growth is restored

to the modes that were previously convectively saturated [for x = 26 µm (ne/nc = 0.23),

this occurs at t ∼ 10 ps (see the black line in the inset to Fig. 4)]. This was verified by

performing a linear analysis on the perturbed profiles. The restoration of absolute growth in

a convectively unstable parametric instability (i.e., fragility of the Rosenbluth result) caused

by noise or turbulence has been noted previously (cf., e.g., Ref. 28). Here, it is triggered

by the nonlinearity of the absolute instability. The result is that, at late times (e.g. the

upper shaded region in the figure), the LW spectrum is much broader and more intense

[see Fig. 1(b)] than during the linear phase [Fig. 1(a)]. The late-time turbulent spectrum

is dominated by large-k common waves with intensities that are greatly in excess of those

predicted by the linear analysis. The effects of Langmuir wave collisional damping are to

change the growth rate in the linear stages [25] and to modify the time-scale for the onset

of subsequent global instability. Despite this, the same universal scenario still applies.

These results will be of fundamental importance to direct-drive ICF experiments on the

NIF, where many laser beams overlap on the target (and a knowledge of TPD stability

properties is essential) and are an important contribution to the understanding of coopera-

tive parametric instabilities in general. The results obtained with this model may provide
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an interpretation of experiments that infer the coexistence of large- and small-wave-number

TPD LW’s via half- and three-halves–harmonic emission [27, 29]. They might also explain

the observation of strong TPD hot-electron production in multiple-beam OMEGA EP ex-

periments, even though the predicted common-wave convective gains are small [9, 20].
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