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We consider 2D Heisenberg antiferromagnets on a triangular lattice with spatially anisotropic interactions
in a high magnetic field close to the saturation. We show that this system possess rich phase diagram in
field/anisotropy plane due to competition between classical and quantum orders: an incommensurate non-
coplanar spiral state, which is favored classically, and a commensurate co-planar state, which is stabilized
by quantum fluctuations. We show that the transformation between these two states is highly non-trivial and
involves two intermediate phases – the phase with co-planar incommensurate spin order and the one with
non-coplanar double-Q spiral order. The transition between the two co-planar states is of commensurate-
incommensurate type, not accompanied by softening of spin-wave excitations. We show that a different se-
quence of transitions holds in triangular antiferromagnets with exchange anisotropy, such as Ba3CoSb2O9.

PACS numbers: 75.10.Jm

Introduction. The field of frustrated quantum magnetism
witnessed a remarkable revival of interest in the last few years
due to rapid progress in synthesis of new materials and in un-
derstanding previously unknown states of matter. The two
main lines of research in the field are searches for spin-liquid
phases and for new ordered phases with highly non-trivial
spin structures [1]. For the latter, the most promising sys-
tem is a 2D Heisenberg antiferromagnet on a triangular lat-
tice in a finite magnetic field, as this system is known to
possess an ”accidental” classical degeneracy: every classical
spin configuration with a triad of neighboring spins satisfying
Sr + Sr+δ1

+ Sr+δ2
= h/(3J), where J is the exchange

interaction, belongs to the ground state manifold.
An infinite degeneracy, however, holds only for an ideal

Heisenberg system with isotropic nearest-neighbor interac-
tion. Real systems have either spatial anisotropy of exchange
interactions, as in Cs2CuCl4 [2, 3] and Cs2CuBr4 [4–6] for
which the interaction J on horizontal bonds is larger than
J ′ on diagonal bonds (see insert in Fig. 1), or exchange
anisotropy in spin space, as in Ba3CoSb2O9, for which Jz <
J⊥ = J (an easy plane anisotropy) [7–10]. An anisotropy of
either type breaks accidental degeneracy already at a classical
level and for fields h = hẑ slightly below the saturation field
hsat selects a non-coplanar cone state with

〈Sr〉 = (S−ρ)ẑ+
√

2Sρ(cos[Q · r+ϕ]x̂+ sin[Q · r+ϕ]ŷ),
(1)

where ρ ∼ S(hsat − h)/hsat is the density of magnons
(the condensate fraction) which determines the magnetization
M = S − ρ. Here ϕ ∈ (0, 2π) is the phase of the U(1)
condensate and Q = (Q, 0) is the ordering wave vector. It is
incommensurate with Q = Qi = 2 cos−1(−J ′/2J) in the
spatially anisotropic case J ′ 6= J and commensurate with
Q = Q0 = 4π/3 for the easy-plane anisotropy (in the last
case, the values of Q0·r = 2πν/3 (mod 2π), with ν = ±1, 0).
The choice of +Q or −Q in (1) selects chirality of the cone
state and specifies broken Z2 symmetry.

Quantum fluctuations are also known to lift accidental de-
generacy, and do so already in the isotropic system. How-
ever, they select different ordered state, which is the co-planar,

FIG. 1. Phase diagram of the spatially anisotropic triangular lat-
tice antiferromagnet with large S near saturation field, as a func-
tion of spatial anisotropy of the interactions. The phases at small
and large anisotropy are commensurate co-planar V-phase, whose
order parameter manifold is U(1) × Z3, and incommensurate non-
coplanar chiral cone phase, which lives in U(1) × Z2 manifold. In
between, there are two incommensurate phases: a co-planar phase,
with U(1)×U(1) symmetry, and a non-coplanar double cone phase,
which is characterized by U(1) × U(1) × Z2 manifold. Line AC
denotes the CI transition from the V phase to the incommensurate
planar phase. The insert shows the geometry of the lattice: exchange
is J on horizontal bonds (bold) and J ′ on diagonal bonds (thin).

commensurate state with two parallel spins in every triad, of-
ten called the V state (Fig. 1) [11–13].

This order is described by

〈Sr〉 = (S − 2ρ cos2[Q · r + θ])ẑ +
√

4Sρ cos[Q · r + θ]

× (cosϕx̂+ sinϕŷ) , (2)

where Q = Q0, ρ = ρQ0 + ρ−Q0 is the sum of two equal
contributions from condensates with wave vectors ±Q0 =
(±Q0, 0), ϕ is a common phase of the two condensates (bro-
ken U(1)), and θ is their relative phase. The values of θ in the
commensurate V phase are constrained to θ = π`/3, where
` = 0, 1, 2 describe three distinct degenerate spin configura-
tions (broken Z3 symmetry).
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The issue we consider in this paper is how the system
evolves at h ≤ hsat from the co-planar V state, selected by
quantum fluctuations, to the non-coplanar cone state, selected
by classical fluctuations, as the anisotropy increases. We show
that this evolution involves commensurate-incommensurate
transition (CIT) and, in the case of J − J ′ model, an inter-
mediate double cone phase.

The phase diagrams. To begin, it is instructive to compare
order parameter manifolds in the two phases. The order pa-
rameter manifold in the V phase is U(1)× Z3 and that in the
cone phase is U(1)× Z2. The symmetry breaking patterns in
the two phases are not compatible, hence one should expect
either first-order transition(s) or an intermediate phase(s). We
show that in J − J ′ model the evolution occurs via two inter-
mediate phases, see Fig. 1. As δJ = J − J ′ increases, the V
phase first undergoes a CIT at δJc1 ∼ (J/

√
S)(hsat−h)/hsat

(line AC in Fig. 1). The new phase remains co-planar, like in
(2), but the phase θ becomes incommensurate and coordinate-
dependent, extending broken Z3 to U(1). The incommensu-
rate co-planar U(1)×U(1) state exists up to a second critical
δJc2 ∼ J/

√
S, where the system breaks the Z2 symmetry be-

tween the condensates at ±Q (line BC in Fig. 1). At larger
δJ the two condensates still develop, but one of them shifts
to a new wave vector Q̄ and its magnitude gets smaller. The
resulting state is a non-coplanar double cone state with order
parameter manifold U(1) × U(1) × Z2. Finally, at the third
critical anisotropy δJc3 = δJc2[1 + O((hsat − h)/hsat)] the
magnitude of the condensate at Q̄ vanishes and the double
cone transforms into a single cone (line BD in Fig. 1).

FIG. 2. The phase diagram of the XXZ model in a magnetic field near
a saturation value, ∆ = (J − Jz)/J . The cone and V states are the
same as in Fig. 1, but the transformation from one phase to the other
with increasing spin exchange anisotropy proceeds differently from
the case of spatial exchange anisotropy and involves one intermediate
co-planar commensurate phase with Ψ-like spin pattern.

In systems with easy-plane anisotropy ∆ = (J − Jz)/J >
0, the the ordering wave vector remains commensurate, Q =
Q0 = ±4π/3, for all ∆ > 0, and the evolution from quantum-
preferred V state to classically-preferred cone state proceeds
differently, via two first-order phase transitions (see Fig. 2).
The V state with θ = `π/3 survives up to some critical ∆c1 ∼
1/S, where another commensurate co-planar order develops,
for which θ = (2` + 1)π/6. The corresponding spin pattern
resembles Greek letter Ψ and we label this state a Ψ phase.

The Ψ phase survives up to ∆c2 ≥ ∆c1, beyond which the
spin configuration turns into the commensurate cone state.

We now discuss the model and the calculations which lead
to phase diagrams in Figs. 1 and 2.

The model. The isotropic Heisenberg antiferromagnet on a
triangular lattice is described by the Hamiltonian

H0 =
1

2
J
∑
r,δ

Sr · Sr+δ −
∑
r

hSzr , (3)

where δ are nearest-neighbor vectors of the triangular lattice.
The two perturbations we consider are

δHanis = (J ′ − J)
∑
r

Sr · (Sr+δ1 + Sr+δ3), (4)

δHxxz =
1

2
(Jz − J)

∑
r,±δ1,2,3

SzrS
z
r+δ. (5)

where 〈r, r + δ1,3〉 are diagonal bonds.
We consider a quasi-classical limit S � 1, when quantum

fluctuations are small in 1/S and quantum and classical ten-
dencies compete at small anisotropy δJ/J ∼ 1/

√
S and/or

∆/J ∼ 1/S. In this limit, the calculations in the vicinity of
the saturation field can be done using a well-established di-
lute Bose gas expansion and are controlled by simultaneous
smallness of 1/S and of (hsat − h)/hsat [12, 14–16]. We ar-
gue that our results are applicable for all values of S, down to
S = 1/2, because (i) quantum selection of the V state holds
even for S = 1/2 [15], and (ii) numerical analysis of S = 1/2
systems [15, 18] identified the same phases near saturation
field as found here.

We set quantization axis along the field direction and ex-
press spin operators Sr in terms of Holstein-Primakoff bosons
a, a+ as S−r = [2S − a+r ar]

1/2a+r , S
z
r = S − a+r ar.

Substituting this transformation into Hanis/xxz and expand-
ing the square root one obtains the spin-wave Hamiltonian
H = Ecl +

∑∞
j=2H(j), where Ecl stands for the classical

ground state energy, and H(j) are of j-th order in operators
a, a+. For our purposes, terms up to j = 6 have to be retained
in the expansion (see the Supplement [19] for technical de-
tails). The quadratic part of the spin-wave Hamiltonian reads

H(2) =
∑
k

(ωk − µ)a+k ak (6)

where ωk = S(Jk − JQ) is the spin-wave dispersion, mea-
sured relative to its minimum at the saturation field hsat,
and µ = (hsat − h)/hsat plays the role of chemical po-
tential. For J − J ′ model, Jk =

∑
±δj Jδj (eik·δj − 1),

where Jδ1,3 = J ′ and Jδ2 = J . Here Q = Qi = (Qi, 0)
with Qi = 2 cos−1(−J ′/2J). For XXZ model, Jk =∑
±δj (Jeik·δj−Jz) and Q = Q0 = (4π/3, 0). In both cases,

lowering of a magnetic field below hsat makes (ωk − µ) neg-
ative at k ≈ ±Q, and drives the Bose-Einstein condensation
(BEC) of magnons. To account for BEC, we introduce two
condensates, 〈aQ〉 =

√
Nψ1 and 〈a−Q〉 =

√
Nψ2, where
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ψ1,2 are complex order parameters. In real space,

〈ar〉 =
1√
N

∑
k

eik·r〈a±k〉 = ψ1e
iQ·r + ψ2e

−iQ·r. (7)

The ground state energy, per site, of the uniform condensed
ground state is expanded in powers of ψ1,2 as

E0/N = −µ(|ψ1|2 + |ψ2|2) +
1

2
Γ1(|ψ1|4 + |ψ2|4)

+Γ2|ψ1|2|ψ2|2 + Γ3((ψ̄1ψ2)3 + h.c.)... (8)

where ψ̄j denotes complex conjugated of ψj , dots stand for
higher order terms, and we omitted a constant term. We veri-
fied [19] that higher orders in ψj do not modify our analysis.

Whether the state at µ = 0+ is co-planar or chiral is de-
cided by the sign of Γ1 − Γ2 [12]. For Γ1 < Γ2, it is energet-
ically favorable to break Z2 symmetry between condensates
and choose ψ1 6= 0, ψ2 = 0 or vice versa. Parameterizing
the condensate as ψ1 =

√
ρeiϕ, where ρ = µ/Γ1, and using

Eq.(7), we obtain the cone configuration, Eq.(1). The order
parameter manifold of this state is U(1)× Z2.

When Γ1 > Γ2, it is energetically favorable to preserve Z2

symmetry and develop both condensates with equal magni-
tude ρ = µ/(Γ1 + Γ2), i.e., set ψ1 =

√
ρeiθ1 , ψ2 =

√
ρeiθ2 .

This corresponds to co-planar state with the common phase
ϕ = (θ1 + θ2)/2 and the relative phase θ = (θ1 − θ2)/2. The
order parameter in this state is given by Eq. (2) with Q equal
to either Qi (J−J ′ model) or Q0 (XXZ model). For Q = Qi,
the state is incommensurate co-planar configuration in Fig. 1.
The order parameter manifold of this state is U(1) × U(1),
where one U(1) is associated with ϕ and the other with θ. For
Q = Q0, the co-planar order is commensurate. In this case,
the symmetry is further reduced by Γ3 term, which is allowed
because ei3Q0·r = 1 for all sites r of the lattice. This term
locks the relative phase of the condensates θ to three values,
reducing the broken symmetry to U(1) × Z3. For Γ3 < 0,
θ = π`/3, where ` = 0, 1, 2. For Γ3 > 0, θ = (2` + 1)π/6.
These are V and Ψ states in Figs. 1 and 2.

Accidental degeneracy of the isotropic model (3) in the
classical limit shows up via Γ

(0)
1 = Γ

(0)
2 = 9J and Γ

(0)
3 = 0,

where the superscript ‘0’ indicates that these expressions are
of zeroth order in 1/S. We now analyze the situation in
the presence of anisotropy and quantum fluctuations: first for
J−J ′ model with J 6= J ′, and then for XXZ one with Jz 6= J .

Phases of the J − J ′ model. We computed Γ
(0)
1,2 for

classical spins, but in the presence of the the spatial anisotropy
and found that it tilts the balance in favor of the cone phase:
∆Γ(0) = Γ

(0)
2 − Γ

(0)
1 = J(1 − J ′/J)2(2 + J ′/J)2 > 0.

Quantum 1/S corrections, on the other hand, favor the co-
planar state: ∆Γ(1) < 0. We obtained [19]

∆Γ(1) =
1

16S

∑
k∈BZ

( (J0 + 5Jk)2

J0 − Jk
− (J0 − 4JQ+k)2

JQ+k − JQ

)
+

3J

8S
≈ −1.6J

S
. (9)

Combining classical and quantum contributions, we find that

∆Γ = ∆Γ(0) + ∆Γ(1) =
9(δJ)2

J
− 1.6J

S
(10)

where, we remind, δJ ≡ J − J ′. We see that ∆Γ < 0 for
δJ < δJc = 0.42J/

√
S, and ∆Γ > 0 for larger δJ . The

condition ∆Γ = 0 selects the point B in Fig. 1 [17].
Split transitions near δJc. At µ = 0+, the transition be-

tween incommensurate planar and cone phases is of first order
with no hysteresis. We now analyze how this transition occurs
at a finite positive µ 6= 0. We start in the cone state to the right
of point B in Fig. 1 and move to smaller δJ . Suppose that
the condensate in the cone state has momentum +Qi. Then
Goldstone spin-wave mode is at k = Qi, while excitations
near k = −Qi have a finite gap. We computed the excitation
spectrum ω

(1)
k with quantum 1/S corrections and found [19]

that near k ≈ −Qi

ω
(1)
k ≈ 3J

4

[
(kx + Q̄i)

2 + k2y + εmin

]
, (11)

εmin =
12µ

hsatJ2

[
(δJ)2 − (δJc)

2

(
1 +

µ

hsat

)]
, (12)

where Q̄i = Qi + (4π/3 − Qi)(3µ/hsat) ≈ Qi +
1.45µ/(hsat

√
S). The cone state becomes unstable at εmin =

0, i.e., at δJc3 ≈ δJc(1 + µ/(2hsat)), and gives rise to
magnon condensation with momentum (−Q̄i, 0), which is
different from −Qi. The condensation of magnons with
(−Q̄i, 0) then gives rise to a secondary cone order, with mo-
mentum not related by symmetry to that of the primary cone
order. The resulting spin configuration is a double cone with
U(1)×U(1)×Z2 order parameter manifold. The primary con-
densate sets the transverse component of 〈S⊥r 〉 = 〈Sxr + iSyr 〉
to be exp[iQi · r + iθ1] and the second condensate adds
exp[−iQ̄i · r + iθ2].

At smaller δJ ≤ δJc3 the position of the minimum in
ω
(1)
k in (11) evolves and drifts towards −Qi. Once it reaches
−Qi, at δJ = δJc2, the two cone configurations interfere con-
structively and give rise to an incommensurate co-planar state.
Critical δJc2 can be estimated by requiring that ω(1)

k = 0 at
k = −Qi. This yields δJc2 = δJc3(1− O(µ/hsat)) < δJc3.
Therefore the transformation from a cone to an incommensu-
rate co-planar state at at a finite µ occurs via two transitions at
δJc2 and δJc3 and involves an intermediate double cone phase
(Fig. 1).

Instability of the V phase. We now return to Eq. (8)
and consider the transition between the V phase and the in-
commensurate co-planar phase. At µ = 0+, this transition
holds at infinitesimally small δJ (point A in Fig. 1). We
show that at a finite µ, the V phase survives up to a finite
δJc1 ∼ (J/

√
S)(µ/hsat). The argument is that in the V

phase Q = Q0 is commensurate and Γ3 term in Eq. (8) is
allowed. We recall that at δJ = 0 and for classical spins
Γ3 = 0. We computed the classical contribution to Γ3 at
δJ > 0 and the contribution due to quantum fluctuations at
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δJ = 0. We found [19] that the classical contribution van-
ishes, but the quantum contribution is finite to order 1/S2 and
makes Γ3 negative:

Γ3 = Γ
(2)
3 =

3

32S2

∑
k∈BZ

( (5Jk + J0)(5JQ+k + J0)JQ−k
(J0 − Jk)(J0 − JQ+k)

−

− (5Jk + J0)(Jk + J0)

2(J0 − Jk)

)
+

3J0
64S2

≈ −0.69J

S2
(13)

Because Γ3 < 0, the V phase has extra negative energy com-
pared to incommensurate phases, and one needs a finite δJ to
overcome this energy difference.

We now argue that the transition at δJc1 is of CIT kind.
To see this, we allow for spatially non-uniform configurations
of the condensate ψ1,2(r). This adds spatial gradient terms
to (4): the isotropic Hamiltonian H0 produces conventional
quadratic in gradient contribution ∝ ρ(∂xθ)

2, while δHanis

(4) adds a linear gradient term ∝ ρSδJ∂x(θ1 − θ2). Com-
bining these two classical contributions with the quantum Γ3

term in (8), we obtain the energy density for the relative phase
θ = (θ1 − θ2)/2:

Eθ =
3JS2µ

4hsat
(∂xθ)

2+

√
3δJS2µ

hsat
∂xθ+S

(Γ3S
2)

4

µ3

h3sat
cos[6θ]

(14)
Eq. (14) is of standard sine-Gordon form, which allows us to
borrow the results from [15]: the equilibrium value of θ shifts
from the commensurate θ = π`/3 in the V phase to an incom-
mensurate value when the coefficient of the linear gradient
term in (14) exceeds the geometric mean of the coefficients
of two other terms in (14). Using Eq. (14) we find that CIT
occurs at δJc1 = 1.17(J/

√
S)(µ/hsat) = 0.13µ/S3/2 (line

AC in Fig. 1). At δJ > δJc1, θ acquires linear dependence on
x, θ = Q̃x. In this situation, the spin configuration becomes
incommensurate but remains co-planar (Fig. 1).

Phases of Hxxz. For the XXZ model with exchange
anisotropy, J and J ′ remain equal, but Jz < J⊥ = J on
all bonds. We verified [19] that Q remains commensurate for
all Jz/J ≤ 1, i.e., Q = Q0 = (4π/3, 0). In this situation, we
found Γ

(0)
2 − Γ

(0)
1 = −JQ(1− Jz/J) = 3J∆. Quantum cor-

rections to Γ1 and Γ2 are determined within the same isotropic
model (3) and are given by (10). Using this, we immediately
find that the ground state of the quantum XXZ model is copla-
nar for ∆ ≤ ∆c2 = 0.53/S and is a cone for ∆ > ∆c2.
The transition between co-planar and cone states near ∆c2 re-
mains first-order for a finite µ > 0, i.e., no intermediate dou-
ble spiral state appears. This is the consequence of the fact
that Q = Q0 remains commensurate. Still, the transformation
from the V phase to the cone phase does involve a new inter-
mediate state, which comes about due to the change of sign of
Γ3. Exchange anisotropy ∆ gives rise to a positive Γ3 to order
1/S: Γ

(1)
3 = J(1 + 2Jz/J)(1 − Jz/J)/(2S) ≈ 3J∆/(2S)

(see [19] for details). At the same time the quantum correc-
tions give rise to negative Γ3 to order 1/S2 already at ∆ = 0,
see (13). Combining the two, we find that

Γ3 = Γ
(1)
3 + Γ

(2)
3 =

3J∆

2S
− 0.69J

S2
. (15)

changes sign at ∆c1 = 0.45/S < ∆c2 = 0.53/S. At smaller
∆ < ∆c1, Γ3 < 0, and the spin configuration is the V state
(the energy is minimized by setting cos 6θ = 1, see (8)). How-
ever, in the interval ∆c1 < ∆ < ∆c2, Γ3 > 0 becomes pos-
itive. The energy is now minimized by cos 6θ = −1, which
corresponds to the Ψ state in Fig. 2. The transition is highly
unconventional symmetry-wise because the order parameter
manifold is U(1)× Z3 in both phases, but extends to a larger
U(1)× U(1) symmetry at the transition point.

We present the phase diagram of XXZ model in Fig. 2. A
very similar phase diagram has been recently obtained in the
numerical cluster mean-field analysis of the S = 1/2 XXZ
model [18].

To summarize, in this paper we considered anisotropic 2D
Heisenberg antiferromagnets on a triangular lattice in a high
magnetic field close to the saturation. We analyzed the cases
of spatially anisotropic interactions, like in Cs2CuCl4 and
Cs2CuBr4 and of exchange anisotropy, as in Ba3CoSb2O9.
We showed that the phase diagram in field/anisotropy plane is
quite rich due to competition between classical non-coplanar
and quantum co-planar orders. This competition leads to mul-
tiple transitions and highly non-trivial intermediate phases, in-
cluding a novel double cone state.

The analysis of this paper can be easily extended to quasi-
2D layered systems, with inter-layer antiferromagnetic inter-
action 0 < J ′′ � J . This additional exchange interaction
leads to the staggering of coplanar spin configurations, of ei-
ther V or Ψ kind, between the adjacent layers, as can easily
be seen by treating ϕ→ ϕz in Eq.(2) as layer-dependent vari-
able with discrete index z. One then immediately finds that
J ′′
∑

r,z
~Sr,z · ~Sr,z+1 is minimized by ϕz = ϕ+πz, in agree-

ment with earlier spin-wave [21] and Monte Carlo [9] studies.
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