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The nature of dark matter is unknown. A number of dark matter candidates are quantum flavor-
mixed particles but this property has never been accounted for in cosmology. Here we explore this
possibility from the first principles via extensive N -body cosmological simulations and demonstrate
that the two-component dark matter model agrees with observational data at all scales. Substantial
reduction of substructure and flattening of density profiles in the centers of dark matter halos found
in simulations can simultaneously resolve several outstanding puzzles of modern cosmology. The
model shares the “why now?” fine-tuning caveat pertinent to all self-interacting models. Predictions
for direct and indirect detection dark matter experiments are made.

PACS numbers: 95.35.+d, 95.30.Cq, 98.80.-k, 14.80.-j

Introduction. — Dark matter (DM) constitutes about
80% of matter and 25% of the total energy density in
the universe but its nature remains completely unknown.
The existence of DM requires revision of the present day
physics. Most likely, DM is a hypothetical particle or
particles beyond the standard model [1].

The current heuristic paradigm of the cold dark mat-
ter with a cosmological constant (ΛCDM) is remarkably
successful at reproducing the large-scale structure of the
universe but appears to disagree with observations at
small scales. First, simulations predict the overabun-
dance of small mass (dwarf) halos as compared to the
much lower number of the observed satellite galaxies in
the Local Group [2–5] and in the field as inferred from
the ALFALFA survey [6]. This problem was termed the
“substructure problem” or “missing satellite problem.”
Second, the cuspy ρ ∝ r−1 DM density profiles found in
ΛCDM simulations [7] disagree with the rotation curves
of dwarf and low surface brightness galaxies, which indi-
cate flattened or cored density profiles [8–14]. Observa-
tions of galaxy clusters also indicate the presence of cores
[15]. Moreover, the largest ΛCDM subhalos in the Local
Group-type environments are too dense in their centers
to host any of the dwarf spheroidal galaxies around the
Milky Way and Andromeda galaxies, and in the field [16–
18]. These two, perhaps related, problems are known as
the “core/cusp problem” and “too-big-to-fail problem”,
respectively. Numerous attempts to reconcile the ΛCDM
model with observations using baryonic processes made
so far (modified star formation, tidal gas stripping, su-
pernova feedback) are inconclusive [4, 19–24]. This is be-
cause the latter problems require strong feedback and,
hence, larger star formation whereas the substructure
problem requires just the opposite – the suppressed star
formation. Contrary to the early expectations, a mild
DM paradigm shift to adopt warm dark matter (WDM)
[25–27] also fails to resolve all these problems altogether
[37–39] due to the similar constraints on the DM particle
mass (but see Refs. [28–36] for hybrid models).

Inability of conventional physics to resolve the
aforementioned problems within the collisionless CDM
paradigm can indicate that DM may exhibit non-
gravitational properties as well. The most natural alter-
native is to admit a large interaction cross-section of DM
with itself [40, 41] but not with normal matter. Con-
trary to the early claims [42–44], such self-interacting
dark matter (SIDM) was successful to explain the ori-
gin of cores without violating any constraints on the
velocity-dependent cross-section σ(v) [45–52]; however it
completely fails to solve the substructure problem [51].
Interestingly, SIDM can naturally explain the presence
of supermassive black holes in red bulgeless galaxies [53]
and their very early formation [54, 55] via gravitational
collapse of the central (collisional) parts of DM halos
[56, 57] — the process that is absent in the “vanilla
CDM” paradigm. At last, the existence of a narrow plane
of the Andromeda dwarf satellites [58], which has no ex-
planation within collisionless CDM, can potentially be
addressed in SIDM, because collisionality induces viscous
drag on subhalos (whether it is enough is unknown).

However, an important possibility that some DM can-
didates are quantum-flavor-mixed particles, e.g., a neu-
tralino, an axion, a sterile neutrino, has not been con-
sidered so far. In this Letter we demonstrate from the
first principles via N -body cosmological simulations that
even the simplest model with two-component quantum-
mixed DM with small mass-degeneracy agrees with ob-
servational data at both large and small scales, thus may
be settling the above problems altogether. Moreover, it
also agrees with the observational constraints on σ(v)
set by SIDM models [47–52]. At last, the model makes
predictions for and is testable with direct and indirect
detection DM experiments.

Model. — First, we postulate that the dark matter
particles are flavor-mixed. Generally, a mixed particle
of flavor α is a superposition of several mass-eigenstates
|fα〉 = a1 |m1〉+ a2 |m2〉+ . . . , where |f〉 and |m〉 denote
wave-functions being flavor and mass eigenstates, and
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a1, a2, . . . are the elements of a unitary matrix. Here we
consider the simplest DM model with two flavors and two
mass eigenstates only [59, 60], i.e., the two-component
DM (2cDM) model. The masses of the mass eigenstates
are mh and ml < mh, i.e., ‘heavy’ and ‘light’. Gener-
ally, |m〉’s have different velocities [61, 62] and propa-
gate along different geodesics. Hence, they can be spa-
tially separated by gravity during structure formation:
the eigenstates with smaller speeds become trapped in a
growing halo earlier than the faster ones. The DM halos
are, thus, self-gravitating ensembles of non-overlapping
wave-packets of heavy and light eigenstates.

Second, we postulate that DM particles can interact
with each other non-gravitationally with some velocity-
dependent cross-section, σ(v), which is consistent with
the existing SIDM constraints. It is customary in cos-
mology to parameterize it as σ(v) = σ (v/v0)

−a
, where

σ and a are parameters and v0 is a normalization con-
stant. Previous studies and observational data allow for
a & 1 [45, 47, 57], so a = 1 is used in the simulations
reported here. This 1/v-dependence is also natural for
mass-eigenstate conversions [60]. Observations constrain
the ratio σ/m, where m is the DM particle mass, to be
in the range 0.1 . σ/m . O(1) cm2/g for the assumed
normalization v0 = 100 km/s [45, 47, 57].

The dynamics of non-relativistic mixed particles is in-
teresting and unusual. For instance, a collision of the
mass eigenstate |mh〉 with another particle can either be
the elastic scattering |mh〉 → |mh〉 or the mass eigenstate
conversion |mh〉 → |ml〉 (or simply the m-conversion
h → l), because of the non-diagonal elements of the
flavor interaction matrix in the mass basis [59]. Let’s
consider h → l off a static, δ-localized flavor potential
with h being at rest, for simplicity. The energy conser-
vation, mhc

2 = mlc
2 + mlv

2/2, implies that |ml〉 gets

a velocity v = c [2(mh −ml)/ml]
1/2

in a random direc-
tion. Our simulations indicate that the mass-degenerate
case, mh ' ml = m and ∆m ≡ (mh − ml) � m, fits
observations the best. Thus we define the ‘kick velocity’
parameter vk ≡ c

√
2∆m/m, which can be used in place

of the ∆m/m parameter. If vk exceeds the escape veloc-
ity from a DM halo, vesc, a part of the particle’s wave-
function — the resultant l-eigenstate — will escape, thus
decreasing the particle’s probability to be in that halo
and, hence, the halo mass. This irreversible escape of
the flavor-mixed particles was called the “quantum evap-
oration” [59, 60]. The evaporation ceases if vesc � vk.

Self-interactions of two mixed DM particles is more
complex and involves all 16 combinations of mass-
eigenstate pairs in the input and output channels, see
[60] for the full quantum mechanical analysis. The m-
conversions in which one or two heavy eigenstates are
converted, hh→ hl, hh→ ll and hl→ ll, can lead to the
quantum evaporation. Because of the energy conserva-
tion, the kinetic energy increases by ∆mc2 in processes
like hh→ hl and twice as much in hh→ ll. The reverse

processes hl → hh, ll → hl and ll → hh can also occur
if kinematically allowed, i.e., if the initial kinetic energy
is large enough to produce a heavy eigenstate. Finally,
the elastic scattering processes ll→ ll, hl→ hl, hl→ lh,
hh→ hh can occur as well.

Complete evaporation of a halo is possible depending
on the m-conversion cross-sections, initial DM composi-
tion [60] and mixing angle, θ. For simulations, we chose
one such case: the maximal mixing with equal initial
numbers of h and l eigenstates. In general, the scatter-
ing and conversion cross-sections depend on the flavor
interaction strengths and θ. The effect of m-conversions
is the strongest for the maximal mixing, and 2cDM re-
duces to SIDM for θ � 1, see [60] for details.

Implementation. — The physics of mixed-particle in-
teractions was implemented in the publicly available cos-
mological TreePM/SPH code GADGET [63]. We simu-
lated two types of DM particles representing h and l mass
eigenstates; the total numbers of each type can change
due to m-conversions. In the code, DM particles are in-
teracting SPH-particles but without hydro-force acceler-
ation. To model particles’ binary interactions, we use the
Monte-Carlo technique with the “binary collision approx-
imation” [42, 44], which is reliable for weakly collisional
systems. The algorithm is as follows. For each randomly
chosen projectile particle, si, a nearest neighbor is found;
this is the target particle, ti. For each input channel, siti,
there are four output channels, soto, namely: hh, hl, lh
and ll. The probabilities of the four processes siti → soto,

Psiti→soto = (ρti/mti)σsiti→soto |vti − vsi |∆t Θ(Esoto)
(1)

are computed, where σsiti→soto = σ(v) is the cross-
section, vti − vsi is the relative velocity of particles in
the pair, ρti is the density of target species computed by
the SPH density routine, ∆t is the iteration time-step and
Θ(Esoto) is the Heaviside function which ensures that the
process is kinematically allowed (i.e., negative final ki-
netic energy, Esoto < 0, means the process cannot occur).
Whether an interaction occurs and through which chan-
nel is determined by random drawing in accordance with
the computed probabilities. Kinematics of all the inter-
actions is computed in the center of mass frame. If a scat-
tering occurs, the particles are given random antiparallel
velocities with magnitudes set by the energy-momentum
conservation. If a m-conversion occurs, then (i) the type
of one or both particles is changed, (ii) the magnitudes
of the final velocities are computed with ∆mc2 given or
taken, depending on the type of conversion and (iii) these
velocities are assigned to the particles in antiparallel di-
rections. If no interaction occurs, the particle velocities
and types remain intact. After this, the pair is marked
inactive until the next time-step. This process is repeated
for all active particles at each time step.

Our 2cDM runs have 2× 4003 = 128 million SPH-DM
particles (in 2cDM, the initial numbers of h and l par-
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FIG. 1. Dark matter distribution in a region of size 5h−1 Mpc
with standard ΛCDM (left panel) and 2cDM (right panel).
Note the deficit of substructure (tiny yellow clumps inside
large blue halos) in the 2cDM vs ΛCDM model, though large-
scales remain intact.

ticles are equal) in the box of 50h−1 Mpc (comoving)
with the force resolution scale of 3.5h−1 kpc, and the
reference ΛCDM run has 2 × 6403 ≈ 524 million par-
ticles and the force resolution of 2.2h−1 kpc. Our box
size was optimized to be large enough to be a representa-
tive sample the universe volume, yet it provides reason-
able resolution at small scales. All the runs are DM-only
simulations with the standard cosmological parameters
Ωm = 0.3,ΩΛ = 0.7,Ωb = 0 and h = 0.7. Initial condi-
tions were generated using N-GenIC code with σ8 = 0.9
and the initial redshift z = 50. AHF code [64] was used
to construct the halo mass function and maximum circu-
lar velocity function (MCVF), analyze halo density pro-
files, etc. Simulations of SIDM were done too. They
fully confirm earlier studies, e.g., the inability to resolve
the substructure problem, hence these results are not re-
ported here. Numerous runs were performed to explore
the range of the 2cDM model parameters ∆m/m and
σ/m, to compare with the reference CDM and SIDM
models and to check for numerical convergence. Here we
report the most important ones.

Results. — Simulations with the large mass difference
mh ≥ ml (not presented here) grossly disagree with the
observational data, so this case is not considered further.
Hence, because of ∆m/m � 1, the mass segregation of
heavier species toward the halo center is negligible.

The DM maps in a zoomed-in region of 5 Mpc across
at z = 0 for the 2cDM and ΛCDM models are presented
in Fig. 1. One sees fewer subhalos in the 2cDM case.
The parameters are ∆m/m ' 10−8, which corresponds
to vk = 50 km/s, and σ/m = 0.75 cm2/g at v0 ∼ vk,
which is fully consistent with observational constraints
on the SIDM cross-section [45–51, 57]. For these values,
the 2cDM MCVF matches the Local Group data the best,
as shown in Fig. 2. This figure shows the number of ha-
los with the maximum circular velocity above a certain
value, N(> Vc,max) versus Vc,max, for 2cDM and ΛCDM;
the data points are from [3, 4]. The amount of substruc-
ture is volume-dependent, so we appropriately rescaled

æ
æ

æ

ææ

æ
æ

CDM

Local

Group

Dwarfs

2cDM

20 50 100 200 500 1000

1

10

100

1000

104

105

Vc,max @km�sD

N
H>

V
c,

m
ax

L

æ
æ

æ

ææ

æ

æ

10 5020 3015 70
1

2

5

10

20

50

FIG. 2. The MCVF in the entire simulation box for ΛCDM
(black curve) and 2cDM (blue curve). The 2cDM model
provides an excellent fit to the rescaled Local Group data
[3, 4] (magenta points). The inset compares the MCVFs for
the substructure within 571 kpc around two individual Milky
Way-like halos, as in [3], against original (non-rescaled) data.

the data points to reproduce the results of Refs. [3, 4]
using the MCVF from our ΛCDM simulation; the proce-
dure is legitimate for a scale-free ergodic distribution of
DM structure. However, no data rescaling is done for the
substructure MCVFs of two individual Milky Way-like
halos shown in the inset. In both cases, the agreement
with 2cDM is much better than with ΛCDM.

The simulations show that vk uniquely determines
the position of the break in the MCVF, V break

c,max ' vk,
whereas σ/m determines the slope below the break. By
comparing simulations with observational data, we de-
termined vk (and consequently ∆m/m) to be around
∼ 50− 70 km/s. Interestingly, a similar value of a char-
acteristic velocity . 100 km/s was found in another in-
dependent analysis of survey data [5]. The ‘best fit’
cross-section is σ/m ∼ 0.75 cm2/g at vk but values a
factor of two smaller or larger are acceptable too. The
halo mass function exhibits the even sharper break at
M ' 1010M�. Thus, the overall suppression of the abun-
dance of dwarf halos resolves the substructure problem.

Fig. 3 shows 120 well-resolved halo density profiles
for ΛCDM and 2cDM. The profiles are trustworthy ev-
erywhere because their inner parts were truncated ac-
cording to the numerical binary collision criterion [65].
The ΛCDM profiles agree with the NFW profile. In con-
trast, the 2cDM inner profiles are shallower and less cen-
trally concentrated. Although the stacked profiles are
less noisy, the inset shows that individual profiles exhibit
an order-of-magnitude variance in their central densities
due to different formation histories. The lack of a com-
mon central density scale agrees with observations [37],
which were originally argued against SIDM.

The softening of cusps is also seen from Fig. 4. Here,
the effective power-law index is obtained by fitting the
individual profiles with the function ρ = ρ0 r

α(1 + r/rc)
β
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FIG. 3. Left panel: density profiles of 120 well-resolved
2cDM dark halos; they are flatter than 1/r. The profiles
are color-coded by the halo mass: red – most massive, blue
– less massive. Right panel: averaged CDM (dashed) and
2cDM (solid) profiles obtained by stacking the profiles within
a narrow, ∼ 30%, mass range around 2 × 1013M� (red),
4 × 1012M� (green) and 8 × 1011M� (blue). The inset
shows six 2cDM individual halo profiles with masses between
(2 − 1.7) × 1013M� for 2cDM. The large central density vari-
ance makes the stacked 2cDM profiles unrepresentative.
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FIG. 4. Histograms of the slopes of the inner density profiles
of the halos shown in Fig. 3. Whereas the CDM profiles show
a cusp rα with α ∼ −0.8 . . .−1 consistent with earlier studies,
the 2cDM profiles are much shallower: α ∼ −0.2 . . .− 0.6.

and then evaluating α at r = 7 kpc/h. The distribution
of the slopes ranges within α ' −0.8 . . . − 1 for CDM
indicating a cusp and within α ' −0.2 . . .−0.6 for 2cDM,
which thus explains the core/cusp and, likely, too-big-
to-fail problems. Importantly, the density profiles and
core sizes of massive halos are mostly sensitive to σ/m,
whereas vk plays little role, if any. The profiles of the
halos withM . 1010M� may depend on vk, which should
be explored with dedicated high-resolution simulations.
We stress that SIDM runs show softened cusps but no
substructure suppression – the MCVF is a scale-invariant
power-law – due to the lack of a physical parameter, such
as vk in 2cDM, which can set the break scale.

Implications. — (i) Cosmology with at least two flavor-
mixed mass-degenerate, ∆m/m ∼ 10−8, species can
naturally resolve cosmological problems at small scales
without invoking new or exotic physics. In contrast,
single-species and/or non-mixed candidates, and non-
degenerate multi-component models are disfavored.

(ii) 2cDM agrees with observations within a range of
the velocity-dependent σ/m allowed for SIDM [45–51,
57]. The constraints are tight: if σ is too small, then it
is cosmologically uninteresting, if it is too large, then the
cusps will be enhanced due to the gravithermal collapse
of halos. This fine tuning, rephrased as the “Why now?”
question is a caveat of 2cDM. However, SIDM and dark
energy/cosmological constant face the same problem.

(iii) Our model does not change the linear power spec-
trum, unlike WDM; all changes occur in the nonlin-
ear stage. The quantum evaporation proceeds slowly
over the Hubble time. We can speculate that the gas
metal-enriched by the stars in dwarf spheroidals should
gradually become unbound from the weakening gravita-
tional potential of the halos and enrich the intergalac-
tic medium with metals, resembling the effect of super-
nova/winds. Since not all small halos are evaporated by
z = 0, the residual substructure can be responsible for
the flux anomalies in gravitational lensing observations.

(iv) Our simulations can formally describe any multi-
component DM where transformations of species are al-
lowed. However, these models face a severe problem:
Why have the heavy (e.g., ‘excited’, etc.) particles sur-
vived in the early universe, but convert to lighter (or
‘ground-state’) species now, when the density is much
smaller? The flavor-mixed 2cDM model does not have
this problem, because the m-conversion cross-section in
the flat space-time is suppressed by (∆m/m)4 ∼ 10−32

over it’s current value [60] and becomes large only during
the structure formation, when mass eigenstates separate.

(v) The 2cDM theory is testable with direct detection
experiments. Indeed, DM is a collection of h and l eigen-
states, which can convert into one another in interactions
with normal matter in a detector. These conversions
should result in the energy ‘mismatch’ of ∼ ±∆mc2, i.e.,
the events will look like inelastic collisions: “exothermic”
and “endothermic”. Particularly, the down-conversions
h→ l, which are always kinematically allowed, can look
like “exothermic” interactions. In contrast, the l → h
up-conversions can occur only if the kinetic energy ex-
ceeds a threshold. Hence, the l → h rate can exhibit a
stronger annual modulation. Next, we can also specu-
late that if DAMA and CoGeNT anomalies are due to
inelastic effects with ∆m ∼ keV, then the DM mass is
m ∼ 108∆m ∼ 102 GeV, which is close to that inferred
from the GeV excess in Fermi-LAT data [66, 67]. Finally,
we also suggest that the use of different targets (e.g., Ne,
Ar) in the experiments may strongly affect the recoil sig-
nal strength because of possible different flavor couplings
to the DM species, whose flavor composition is unknown.

(vi) 2cDM can be tested in indirect detection experi-
ments. For instance, the direct DM annihilation into two
photons results in a line triplet corresponding to the an-
nihilations in h+ h, h+ l and l + l channels. Thus, the
DM annihilation line can be a triplet at E = mc2 spit by
∆E = 1

2∆mc2 and with different line strengths.



5

The author is grateful to Lars Hernquist, Avi Loeb,
Ramesh Narayan, Lyman Page, Sergei Shandarin, Mark
Vogelsberger for discussions and suggestions. This work
was supported in part by the Institute for Theory
and Computation at Harvard University and by DOE
grant DE-FG02-07ER54940, NSF grant AST-1209665
and XSEDE grants AST110024 and AST110056. The
simulations utilized XSEDE high-performance comput-
ing systems Trestles (SDSC) and Ranger (TACC).

[1] Bertone, G., Hooper, D., & Silk, J., Phys. Rep., 405, 279
(2005).

[2] Moore, B., Ghigna, S., Governato, F., Lake, ., Quinn,
T., Stadel, J., & Tozzi, P., Astrophys. J. Lett., 524, L19
(1999).

[3] Klypin, A., Kravtsov, A.V., Valenzuela, O., & Prada, F.,
Astrophys. J., 522, 82 (1999).

[4] Kravtsov, A., Adv. in Astron., 2010,
doi:10.1155/2010/281913 (2010).

[5] Zwaan, M.A., Meyer, M.J., & Staveley-Smith, L., Montly
Not. R. Astron. Soc., 403, 1969 (2010).

[6] Papastergis, E., Martin, A. M., Giovanelli, R., & Haynes,
M. P., Astrophys. J., 739, 38 (2011).

[7] Navarro, J.F., Frenk, C.S., & White, S.D.M., Astrophys.
J., 490, 493 (1997).

[8] Salucci, P. & Burkert, A, Astrophys. J., 537, 9 (2000)
[9] Gentile, G., Salucci, P., Klein, U., Vergani, D., Kalberla,

P., Montly Not. R. Astron. Soc., 351, 903 (2004).
[10] Salucci, P., Lapi, A., Tonini, C., Gentile, G., Yegorova, I.,

Klein, U., Montly Not. R. Astron. Soc., 378, 41 (2007).
[11] Donato, F., Gentile, G., Salucci, P., Frigerio Martins, C.,

Wilkinson, M. I., Gilmore, G., Grebel, E. K., Koch, A.,
Wyse, R., Montly Not. R. Astron. Soc., 397, 1169 (2009).

[12] de Blok, W. J. G., Walter, F., Brinks, E., Trachternach,
C., Oh, S-H., & Kennicutt, Jr., R. C., Astrophys. J., 136,
2648 (2008).

[13] de Blok, W.J.G., Adv. in Astron., 2010,
doi:10.1155/2010/789293 (2010).

[14] Kuzio de Naray, R., & Kaufmann, T., Montly Not. R.
Astron. Soc., 414, 3617 (2011).

[15] Newman, A.B., Treu, T., Ellis, R.S., Sand, D.J., Richard,
J., Marshall, P.J., Capak, P., & Miyazaki, S., Astrophys.
J., 706, 1078 (2009).

[16] Boylan-Kolchin, M., Bullock, J. S., & Kaplinghat, M.,
Montly Not. R. Astron. Soc., 415, L40 (2011).

[17] Boylan-Kolchin, M., Bullock, J. S., & Kaplinghat, M.,
Montly Not. R. Astron. Soc., 422, 1203 (2012).

[18] Papastergis, E., Giovanelli, R., Haynes, M.P., & Shankar,
F., arXiv:1407.4665 (2014).

[19] Governato, F., Brook, C., Mayer, L., et al., Nature, 463,
203 (2010).

[20] Walker, M.G., & Peñarrubia, J., Astrophys. J., 742, 20
(2011).

[21] Ferrero, I., Abadi, M.G., Navarro, J.F., Sales, L.V., &
Gurovich, S., Montly Not. R. Astron. Soc., 425, 2817
(2012).
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[39] Macciò, A. V., Paduroiu, S., Anderhalden, D., Schneider,

A., & Moore, B., Montly Not. R. Astron. Soc., 424, 1105
(2012).

[40] Carlson, E. D., Machacek, M. E., & Hall, L. J., Astro-
phys. J., 398, 43 (1992).

[41] Spergel, D.N., & Steinhardt, P.J., Phys. Rev. Lett., 84,
3760 (2000).

[42] Burkert, A., Astrophys. J. Lett., 534, L143 (2000).
[43] Yoshida, N., Springel, V., White, S.D.M., & Tormen, G.,

Astrophys. J. Lett., 544, L87 (2000).
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