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An integrable model with parafermion zero energy modes
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Parafermion zero energy modes are a vital element of fault-tolerant topological quantum compu-
tation. Although it is believed that such modes form on the border between topological and normal
phases, this has been demonstrated only for Z2 (Majorana) and Z3 parafermions. I consider an inte-
grable model of one-dimensional fermions where such demonstration is possible for ZN parafermions
with any N . The procedure is easely generalizable for more complicated symmetry groups.
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Non-Abelian anyons possess the most exotic statis-
tics known to man. Their permutation transforms one
ground state into another one locally indistinguishable
from the first [1],[2]. In conformal field theories this
property appears as non-trivial braiding of the conformal
blocks [3] (see also [4]). There are possible applications of
non-Abelian statistics to fault-tolerant topological quan-
tum computation [5],[6],[7],[8], but it is also interesting
on its own right.

The simplest anyons emerge in models of Majorana
fermions which material realization has possibly been al-
ready achieved [9]. The conceptually simplest and most
straightforward generalization of Majorana fermions is
ZN parafermions. The former ones have Z2 symmetry
and the parafermions have ZN (N>2) symmetry. In
quantum computation applications information is sup-
posed to be stored nonlocally in parafermionic zero en-
ergy modes and one has to learn how to manipulate them
in order to process it. To this end several schemes have
been recently suggested [10],[11]. In systems with many
anyon zero modes they will interact so that the degen-
eracy will be lifted placing restrictions on workings of
the device. This makes multi-anyon systems an interest-
ing subject of research and many lattice models of in-
teracting anyons have been considered (see, for example
[12],[13],[14] and references therein).

The most obvious problem in this context is how to
obtain anyon zero energy modes. It has been argued,
in direct analogy with the Majorana zero modes, that
they emerge on a boundary between ground states with
different topological properties (see, for example, [11]).
The problem is, however, that for N > 2 in all even re-
motely realistic models the parafermions are interacting
objects which makes a consideration of inhomogenious
cases difficult. So far the existence of the zero modes was
demonstrated only for N=3 case which can be treated
by the Abelian bosonization [11]. As far as noninteract-
ing parafermions are concerned, their Hamiltonian was
found to be non-Hermitian with complex energy eigen-
values [15].

Here I suggest a solvable Hermetian fermionic model
which contains inhomogeneities of the required type. In
this model anyon zero energy modes are located on mo-
bile solitons which number and average velocity can be
varied by changing the temperature and the chemical po-

tential. The analysis of the corresponding Bethe ansatz
equations supports the idea that a boundary between
topologically different states does contain parafermionic
zero modes. Although it is not a proof that parafermion
zero modes always emerge on the boundary between
ground states of different topology, but this is at least a
demonstration that they may emerge there. The deriva-
tion is easily generalizable to parafermions from other
simple Lie groups such as, for instance, SUk(N) (see, for
example, [16]). I also derive an effective model describ-
ing a finite density of such modes and obtain its exact
solution. The latter solutions allows one to estimate the
interaction strength between the parafermions.
The field theoretical definition and properties of mass-

less ZN chiral parafermionic fields ψ, ψ+ and ψ̄, ψ̄+ can
be extracted from the SUN (2) Kac-Moody algebra. The
corresponding current operators can be defined in terms
of free chiral fermion fields R,R+ and L,L+:

Ja =

N
∑

k=1

R+
kαS

a
αβRkβ , J̄a =

N
∑

k=1

L+
kαS

a
αβLkβ , (1)

where Sa are spin S=1/2 matrices. On the other hand
these currents can be written as [17]

J+ =

√
N

2π
ei
√

8π/Nϕψ, J− =

√
N

2π
e−i

√
8π/Nϕψ+(2)

Jz = i
√

N/2π∂zϕ

J̄+ = e−i
√

8π/Nϕ̄ψ̄+, J̄− = ei
√

8π/Nϕ̄ψ̄ (3)

J̄z = −i
√

N/2π∂z̄ϕ̄,

where ψ, ψ+ are chiral parafermion fields and ϕ, ϕ̄ are
chiral components of the bosonic scalar field Φ = ϕ + ϕ̄
governed by the Gaussian action

S =
1

2

∫

d2x(∂µΦ)
2. (4)

From (2,3) one can deduce expressions for the two- and
multi-point correlators of the parafermion fields which for
N > 2 reveal their nontrivial braiding properties. For the
two-point functions we have

〈〈ψ(z)ψ+(0)〉〉 ∼ z−2(1−1/N),

〈〈ψ̄(z̄)ψ̄+(0)〉〉 ∼ z̄−2(1−1/N). (5)
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For the 2n-point correlation functions we have the iden-
tity

〈ψ(1)...ψ(n)ψ+(n+ 1)...ψ+(2n)〉 =
〈J+(1)...J+(n)J−(n+ 1)...J−(2n)〉 ×
∏

i<j≤n

z
−2/N
ij

∏

n<i<j≤2n

z
−2/N
ij

∏

i,j≤n

z
2/N
i,j+n (6)

which shows that for N > 2 multi-point correlators of
parafermions do not satisfy the Wick’s theorem.
In a direct analog to the Majorana fermions one can

introduce a mass term for the ZN parafermions. The
corresponding action is

S = ZN [ψ, ψ̄]− λ

∫

d2x[ψψ̄ + ψ+ψ̄+], (7)

where ZN term describes the critical part of the
parafermion action. The mass term changes the long
distance asymptotics of the parafermion correlation func-
tions, but not their brading properties. For N > 2 this is
an interacting theory though its properties can be studied
since it is integrable[18].
In the N=2 case it is easy to study a situation where

λ is coordinate dependent. It is well known that when
λ(x) changes sign (a kink) the Schrödinger equation has a
zero energy solution where the eigenfunction is localized
at the kink (zero energy Majorana bound state). An
important question is whether such bound states exist for
N>2. Here I suggest an indirect approach demonstrating
existence of the parafermion zero modes.
Let us consider the fermionic model with the Hamilto-

nian density

Hf = i(−R+
kα∂xRkα + L+

kα∂xLkα) +

g‖J
zJ̄z +

g⊥
2

(

J+J̄− + J−J̄+
)

. (8)

This fermionic model was solved by the Bethe ansatz for
g⊥ = g⊥ in [19] and for the general case in [20]. The sub-
sequent discussion will rely on this solution which main
logic I will discuss in some detail.
I have started with the fermionic model because

fermions constitute elementary particles and therefore
fermionic models present more natural starting point for
our consideration. Parafermions exist as collective exci-
tations of many-body fermionic theories and are in that
sense secondary objects.
To build a bridge from model (8) to models of

parafermions I will use conformal embedding. Conformal
embedding defines ”fractionalization rules” for breaking
up free fermion Hamiltonians into sums of commuting
Hamiltonians of different critical models [21]. The re-
quired embedding is

U(2N) = U(1)⊕ SU2(N)⊕ SUN(2) (9)

which means that the free fermionic Hamiltonian with
U(2N) symmetry can be written as a sum of three

commuting Hamiltonians - one Gaussian models and
two Wess-Zumino-Novikov-Witten (WZNW) models, the
SUN (2) and the SU2(N) one:

∫

dxi(−R+
kα∂xRkα + L+

kα∂xLkα) =

HGauss +W [SUN(2)] +W [SU2(N)]. (10)

The current-current interaction commutes with Hamilto-
nians HGauss and W [SU2(N). Hence the corresponding
sectors of the original fermionic model (8) remain gap-
less. The interacting sector is described by the SUN (2)
WZNW model perturbed by the anisotropic current-
current interaction. The corresponding Hamiltonian den-
sity is

H =
2π

N + 2

(

: JaJa : + : J̄aJ̄a :
)

+

g‖J
zJ̄z +

g⊥
2

(

J+J̄− + J−J̄+
)

(11)

This is exactly the theory which we can rely to the
parafermions. At g‖ > 0 the theory is massive and has
solitons and antisolitons. As is evident from the exact so-
lution, each (anti)soliton carries parafermion zero mode
which supplies it with the non-Abelian statistics. The
corresponding S-matrix in the soliton sector is a tensor
product of the XXZ S-matrix (the scattering matrix of
the sine-Gordon model) and the RSOS (Restricted Solid
on Solid) one [22]. At sufficiently large g‖ it also has
soliton-antisoliton bound states.
It turns out that we can use one more conformal em-

bedding. Namely, the Lagrangian density for Hamilto-
nian (11) can be written as

L =
1

2
(∂µΦ)

2 + ZN [ψ, ψ̄]− λ
(

eiβΦψψ̄ +H.c.
)

, (12)

where λ ∼ Ng⊥ and β is related to g‖ so that at small

couplings we have β2 = (1 +Ngz/4π)
−1.

The last term in (12) is similar to the last term in
(7) where the role of static function λ(x) is played by
dynamic field exp[iβΦ]. Since this field changes sign on
soliton configuration, one can use model (12) as a substi-
tute for the model of parafermions (7) with a coordinate
dependent mass gap provided one meets certain require-
ments. First, the solitons must be slow to be consid-
ered quasi-static and on average be far from each other.
More accurate criteria for these will be extracted from
the exact solution. Second, quantum fluctuations of the
bosonic exponent should be small so that it will mimic a
static λ(x) in (7). This requires small β.
The above requirements are met in the following set up.

Let us apply a magnetic field (it is coupled to the bosonic
sector) which strength is slightly below the soliton mass
threshold. The field breaks the symmetry between the
solitons and the antisolitons. The magnitude of the field
is slightly below the soliton mass so that

T << M −H << M. (13)
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At that temperatures we have a rarified gas of thermally
excited slow solitons and no antisolitons. The thermal
velocity of these solitons is

√

〈v2〉 =
√

2T/M << 1, (14)

and the density is

n ∼ e−(M−H)/T << 1, (15)

so they can exist undisturbed between collisions for the
exponentially long time τ ∼ exp[(M −H)/T ].
By looking at the thermodynamic Bethe ansatz

(TBA) equations we can establish whether solitons carry
parafermionic zero modes. The corresponding TBA de-
scribing the soliton sector of the theory in the limit (13)
can be extracted, for example, from [23]. They are a part
of a more general system of equations which may contain
also massive solition-antisoliton bound states (see [24])
which are irrelevant for the present discussion. The free
energy F of model (12) written in the limit (13)

F/L = −TM
∫

dθ

2π
cosh θ ln(1 + eǫN (θ)/T ), (16)

where L is the system size, is expressed in terms of func-
tion ǫN (θ) which is determined by the following system
of nonlinear integral equations:

ǫj = Ts ∗ ln(1 + eǫj−1/T )(1 + eǫj+1/T ) +

Ts ∗ ln(1 + eǫN/T )δj,N−1, j = 1, ...N − 1, (17)

ǫN −K ∗ T ln(1 + eǫN/T ) = −M cosh θ +H +

Ts ∗ ln(1 + eǫN−1/T ) +O(e−H/T ). (18)

where kernel K is

K(ω) =
sinh[π(ξ − 1)ω/2]

2 cosh(πω/2) sinh(πξω/2)
, ξ =

1

8π/Nβ2 − 1
,

and

s ∗ f(x) =
∫ ∞

−∞

dyf(y)

π cosh(x− y)

I am interested in limit (13). Then in the first approx-
imation one can replace quasi-energies ǫj (j =1,...N-1)
by their constant asymptotic values for which the corre-
sponding integral equations (17) become algebraic. The
solution is

1 + eǫj/T =







sin
[

π(j+1)
N+2

]

sin
(

π
N+2

)







2

. (19)

Substituting this into (16) we obtain the following ex-
pression for the free energy:

F/L = −TQ
∫

dp

2π
e−(M−H)/T−p2/2MT +

O(exp[−2(M −H)/T ]), (20)

Q = 2 cos
( π

N + 2

)

. (21)

This expression describes the free energy of an ideal gas
of particles of mass M with a chemical potential H .
The prefactor Q indicates that the state of N particles
with given energy is degenerate so that in the thermody-
namic limit the degeneracy is equal to QN . This degener-
acy obviously comes from the parafermionic zero modes
bound to the solitons. The fact that Q is not integer
is a direct indication that the operators describing zero
modes attached to different kinks do not commute with
each other. For N = 2 we reproduce the known result
D(2)N = 2[N/2] for the dimensionality of the Clifford al-
gebra representation of N gamma matrices. For N = 3
the obtained dimensionality is the large N asymptotic of
Fibonacci numbers:

φ = 2 cos(π/5) =
1 +

√
5

2
,

D(3)N = [φN − (−φ)−N ]/
√
5. (22)

Expression (20) is the first term in the expansion of
the free energy in the soliton density and, as I have said,
describes the ideal gas of anyons. One can move further
and extract from (17) the equations for interacting anyon
gas. The interactions lift the ground state degeneracy.
At lowest temperatures we invert the matrix kernel in

(17) to get the equations in the form where the kernel
acts on the term which vanish in T=0 limit:

T ln(1 + eǫj/T )− TAjk ln(1 + e−ǫk/T ) =

Aj,N−1 ∗ s ∗ T ln(1 + eǫN/T ), (23)

j, k = 1, ...N − 1, (24)

where

Ajk(ω) = 2 coth(πω/2)×
sinh{π[N −max(j, k)]ω/2} sinh{πmin(j, k)ω/2}

sinh(Nπω/2)
.

At temperatures T << M the distribution function in
the right hand side (r.h.s.) of (23) is very sharp and can
be replaced by delta function:

Aj,N−1 ∗ s ∗ T ln(1 + eǫN (θ)/T ) ≈ nsol(T )Aj,N−1 ∗ s(θ),
(25)

where nsol is the number of solitons. Then Eqs.(23) with
such r.h.s. look like the TBA for the ferromagnetic XXZ
model with nsol sites and anisotropy γ = π/N with an
additional restriction forbidding solutions with rapidities
shifted by iπ/2. Such restricted equations describe the
critical Restricted Solid-on-Solid (RSOS) models [25],[26]
with conformal charge c = 2(N−1)/(N+2). The r.h.s. of
Eqs.(25) is ∼ nsol which means that the bandwidth of the
excitations of the interacting anyon gas is proportional to
the average distance between the solitons λ ∼ n−1

sol. This
contradicts a naive expectation that this bandwidth is
proportional to the overlap of the zero mode wave func-
tions which would be exponentially small inMλ. Instead
in the model with mobile solitons we have the bandwidth
which is related to the time between their collisions.
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Conclusions. In this paper I used fermionic inte-
grable model (8) to describe a state where the mass
term of ZN parafermions alternates its sign. In this
approach parafermions exists as collective excitations of
the fermionic theory. The analysis of the Bethe ansatz
equations show that the parafermions create zero energy
bound states attached to the domain walls (solitons) of
a bosonic field. This bosonic field is also a collective de-
gree of freedom related to smooth fluctuations of the spin
density and its solitons exist as dynamic excitations. By
fine tuning the temperature and magnetic field one can
create a situation when the solitons are quasi static which

imitates the desired situation of alternating parafermion
mass. When the density of the domain walls is finite, the
modes interact with each other which lifts the ground
state degeneracy. The characteristic bandwidth of the
excitations of this interacting anyon gas is proportional
to the inverse collision time of solitons, i.e. to the domain
wall density.

I am grateful to H. Frahm and R. Konik for valuable
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98 CH 10886.
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Field Theory, (Springer-Verlag, New York, 1996).
[22] F. A. Smirnov, Int. J. Mod. Phys. A9, 5121 (1994).
[23] A. M. Tsvelik, Phys. Rev. B 52, 4366 (1995).
[24] A. M. Tsvelick, Sov. Phys. JETP 66, 221 (1987).
[25] V. V. Bazanov and N. Yu. Reshetikhin, Prog. Theor.

Phys. 120, Suppl. 301 (1990).
[26] N. Reshetikhin and F. Smirnov, Comm. Math. Phys.

131, 157 (1990).


