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Abstract 

Intense terahetz (THz) pulses induce a photoluminescence (PL) flash from undoped 

high-quality GaAs/AlGaAs quantum wells under continuous wave laser excitation. The 

number of excitons increases 10000-fold from that of the steady state under only laser 

excitation. The THz electric field dependence and the relaxation dynamics of the PL 

flash intensity suggest that the strong electric field of the THz pulse ionizes impurity 

states during the one-picosecond period of the THz pulse and release carriers from a 

giant reservoir containing impurity states in the AlGaAs layers. 
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The topic of photoexcited carrier dynamics in quantum wells (QWs) has attracted 

considerable attention from researchers interested in technological applications and 

fundamental physics [1-3]. Owing to their direct bandgaps and high electron mobilities, 

compound semiconductor QWs, e.g., GaAs and AlGaAs, have advantages for 

applications ranging from efficient photovoltaic devices to radio-frequency electronics 

and optoelectronics [3]. Time-resolved photoluminescence (PL) measurements have 

been extensively used to study the lifetimes and relaxation mechanisms of carriers in 

QWs [1,4-6]. In these measurements, the relaxation process depends on the initial 

distribution of the electron-hole pairs created by the photoexcitations or injected current 

[6,7], and the carriers created in the barrier or cap layers, i.e., non-active layers, become 

trapped at various local sites originating from chemical, structural, and interface 

imperfections. Although these trapped carriers have a significant influence on the 

carrier dynamics and performance of devices [8-10], their origin and distribution are as 

yet unknown. Recently, it has been demonstrated that a tunable, narrowband terahertz 

(THz) wave source induces a photoionization of trap states and is useful for studying 

them, because their specific excitation energies may lie in the few meV or THz spectral 

region [11-13]. Moreover, the ultra-intense electric fields of single-cycle THz pulses 

[14-17] have been shown to induce field-ionization processes in trap states [18,19]. 

Thus, these phenomena may give us complementary information on the fundamental 

characteristics of trap states, which cannot be obtained with optical methods, and enable 

us to study their influence on nonlinear transport and phase transition phenomena under 

instantaneous high-electric fields [18-21]. 

 

We studied photoexcited carrier dynamics in undoped high-quality GaAs/AlGaAs 

quantum wells by using time-resolved photoluminescence spectroscopy involving the 

simultaneous use of a continuous-wave visible laser and intense single-cycle THz pulse 

excitations. The THz pulses induce bright PL flashes of exciton emissions from GaAs 
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wells under visible continuous wave (CW) laser excitation. The THz electric field 

dependence and relaxation dynamics of the PL flash intensity suggest that the strong 

electric field of the THz pulse ionizes impurity states and releases carriers from a giant 

reservoir containing many impurity states in the AlGaAs layers, which cannot be 

observed by optical methods. 

 

Figure 1(a) shows a schematic diagram of the experimental setup. The THz pulses 

were generated by optical rectification of femtosecond laser pulses in LiNbO3 crystal by 

using the tilted-pump-pulse-front scheme [15,17]. The spectrum of the THz pulse has a 

maximum intensity around 0.8 THz and a bandwidth of ~1.5 THz (full width at 

half-maximum intensity (FWHM)) [17]. An amplified Ti:sapphire laser (repetition rate: 

1 kHz, central wavelength: 780 nm, pulse duration: 100 fs, and 4 mJ/pulse) was used as 

the laser pulse source. A pair of wire-grid polarizers was used to vary the field 

amplitude of the THz pulse without modifying its waveform. 

 

The multiple quantum well (QWs) sample consisted of a stack of ten 10-nm-wide 

undoped GaAs wells separated by 12-nm-wide Al0.3Ga0.7As barriers grown via 

molecular-beam epitaxy (MBE) on a (001)-GaAs substrate (thickness of 370 μm), and 

the QWs were sandwiched between 1-μm Al0.33Ga0.67As digital-alloy-barrier layers. The 

high quality of the sample with a low impurity concentration of <1015 cm−3 was attested 

by mobilities of ~2×106 cm2V−1s−l measured on other heterostructures grown in the 

same MBE system shortly thereafter. The sample was mounted in vacuum on a 

liquid-helium-cooled cold finger, cooled down to 10 K, and continuously excited by the 

CW laser (2.33 eV) above the bandgap energy of the AlGaAs layers (1.88 eV). Along 

with the visible laser excitation, an intense THz pulse with a maximum 

peak-electric-field amplitude of 0.77 MV/cm irradiated the sample. The visible laser 

beam was directed through a small hole in the parabolic mirror used to focus the THz 
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pulse. The spot sizes of the visible laser and THz pulse on the sample were ~100 and 

~300 μm in diameter, respectively. A Hamamatsu streak camera coupled to a 

spectrometer with a resolution of about ~1 meV was used to make time- and 

wavelength-resolved detections of the PL induced by the THz pulse. 

 

Figures 2(a) and 2(b) show a typical streak camera image and its spectrally integrated 

transient of the PL from the QWs excited by the visible CW laser and THz pulse. The 

steady-state PL intensity IPL measured only with the visible laser excitation (0.6 W/cm2) 

is very weak (blue solid line in Fig. 2(b)). Nonetheless, a bright PL flash arises just after 

the arrival of the THz pulse. Figure 2(c) shows the time integrated spectra of the PL 

flash shown in Fig. 2 (a) and the PL measured with only the visible CW laser excitation. 

The peak energies centered around 1.54 eV are almost the same, and Kronig–Penney 

analysis shows that their origins can be attributed to n=1 heavy-hole exciton emissions 

in the wells [22]. 

 

Figure 3(a) shows the CW laser power dependence of the PL flash intensity induced 

by a 0.77-MV/cm THz pulse. With increasing visible CW laser intensity, the flash 

intensity increases and shows a saturation behavior. In the minimum photoexcitation 

intensity case (2.33 eV, 60 μW/cm2) without THz pulse irradiation, the generated 

exciton density Nex in the steady state and the total exciton density Ntotal during the 1-ms 

repetition period Trep in the GaAs wells are estimated to be 2.5×103 cm−2 and 1.3×109 

cm−2 (=NexTrep/τex, where τex is exciton lifetime) [23]. The PL flash amplitude reaches 

1.2×104-fold that of the steady-state PL intensity, and the increased exciton density ΔN 

in the PL flash is estimated to be ~3×107 cm−2. This means that the THz pulse 

irradiation can transiently increase the number of excitons by four orders of magnitude 

with respect to the steady-state exciton density Nex, and the PL yield increment of the 

GaAs wells is estimated to be ~10−2 (=ΔN/Ntotal). 
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Figure 3(b) shows the THz pump electric field dependence of the flash PL intensity. 

As the electric field increases, the PL flash intensity increases gradually and starts to 

saturate at around 0.5 MV/cm. The released carrier density can be theoretically 

estimated by assuming a field-assisted tunneling process as a way of trap ionization. 

Additionally, we found that the PL flash is absent for the excitations (1.58 eV) below 

the bandgap of AlGaAs layers having various excitation densities, indicating that the 

trap states exist in the AlGaAs layers. The time evolution of the trapped carrier density 

Nt(t) under THz pulse irradiation can be described by [24]: 
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where τ is the tunneling time of carriers, and e is the charge of the electron, and Ib and 

m* are the binding energy of trap states and effective mass of the electron (0.072 m0) or 

light hole (0.105 m0) in the AlGaAs layers [25]. in
THzE (t) is the temporal THz electric 

field inside the sample [18]. By integrating Eq. (1), the density of remaining trapped 

carriers after the THz pulse excitation can be represented as follows: 
 

( ) ( )∫
∞

∞−

−−= dttNtNN tt
1

0 τ .     (2) 

 

Here, the conservation condition, N0=Nt+Nr, is assumed, where N0 and Nr are 

respectively the total trap state density and released carrier density. Using the temporal 

profile of the THz electric field ETHz(t), we can numerically calculate the released 
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carrier density Nr from Eq. (2).  

 

Assuming the PL flash intensity I is proportional to the released carrier density Nr, 

fitting Eq. (2) with a light-hole mass of 0.105 m0 to the data shown in Fig. 3(b) indicates 

that the THz field dependence of the PL flash intensity is well described by a tunneling 

process and the best fit to the experimental data is obtained with Ib=40 meV [26]. This 

deduced binding energy is similar to that of shallow acceptors (~30�50 meV) of group 

IV elements like carbon and silicon substitute for arsenic atoms [25, 28], whereas that 

deduced from the electron mass (Ib=46 meV) does not match the donor binding energy 

(~10 meV) [25,29]. This result implies that the photoexcited carriers can be trapped at 

such shallow impurity donors and acceptors, and the field dependence of PL flash 

shown in Fig. 3(b) reflects a field ionization of accepter because of its larger binding 

energy. As shown in the inset of Fig. 3(b), the temperature dependence of the PL flash 

is similar to that of the PL intensity obtained from only the 2.33 eV-cw-laser excitation. 

This indicates that the gradual temperature dependence of the PL flash is governed by 

thermalization of excitons to large k states, which suppresses radiative recombination of 

excitons in GaAs QWs [5], and not by thermal ionization of the impurity states because 

of their larger binding energy Ib compared with the thermal energy of this temperature 

regime. 

 

The dynamics of the trapped carriers were studied by analyzing the temporal 

response of the PL flash as a function of the delay between the THz and visible-laser 

pulses shown in Fig. 4. In this experiment, the visible CW laser beam (2.33 eV, 60 

W/cm2) was modulated with an acousto-optic modulator (pulse width of 10 ns and 

repetition rate of 1 kHz), which was operated synchronously with the 1-kHz amplified 

Ti: sapphire laser clock and THz pulse source. Here, the visible laser pulse and THz 

electric field were held at 1 μJ/cm2 and 0.77 MV/cm, respectively. The delay time 
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between the visible and THz pulses was varied over a nanosecond to submillisecond 

time region by using an electronic-delay-generator device. Figure 4 shows the PL flash 

intensity as a function of the delay time, which is proportional to the number of carriers 

released by the THz pulse [27]. The intense THz pulses induce the PL flash after the 

visible laser pulse excitation, and the flash intensity decreases as the delay increases. 

The decay times of the fast and slow components are estimated to be τ f ~0.3 μs and τs 

~1.6 ms by using a bi-exponential function, i.e., ( ) ( )ssff tAtA ττ −+− expexp . Here, 

Af is 0.45, and and As is 0.43. The long decay time of the PL flash suggests that the 

lifetime of photoexcited electron-hole pairs trapped at the shallow impurity states 

became longer as their spatial separation increased [30], much like the case of 

donor-acceptor (DA) pairs.  

 

In contrast to the case of the PL flash, the excitation-power dependence of the DA PL 

intensity obtained from photoexcitation measurements without THz pulse excitation 

does not show any saturation behavior [31]. The saturation effect might occur if the 

impurity states available to bind carriers are limited; in fact, the estimated total impurity 

density of ~109 cm−2 is much smaller than the total incident photon density (~1011-1017 

cm−2) of the 2.33-eV excitation laser during the one-millisecond time period for the 

whole range from the minimum to maximum excitation intensity (60 μW/cm2-60 

W/cm2) [32]. Additionally, the decay time of the impurity states involved in the PL 

flash is longer than one millisecond as shown in Fig. 4, which is particularly suitable for 

the saturation behavior. From these considerations, we conclude that during the 1-ms 

repetition period of the THz pulses, carriers excited by the CW laser accumulate in 

impurity states, and the intense THz pulse ionizes them in one burst [33]. The released 

carriers diffuse to the GaAs well layers and therein form excitons which recombine in a 

radiative process, leading to the bright PL flash, as shown in Fig. 2. 
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In summary, we studied the photoexcited carriers of undoped GaAs/AlGaAs QWs by 

using time-resolved photoluminescence spectroscopy with simultaneous visible laser 

and intense single-cycle THz pulse excitations. The bright PL flashes from the GaAs 

wells indicate that the THz pulse increases the number of excitons due to the 

field-ionization of the impurity states by up to 10000-fold that of the steady state. Our 

results shed light on new aspects of photoexcited carrier dynamics in high-quality QWs 

and their influence on nonlinear transport phenomena under instantaneous THz 

high-electric fields. As such, they might lead to improved electronic and optoelectronic 

devices. In addition, they suggest that the efficient erasing of trapped carriers during the 

one-picosecond period rise to a delayed PL flash that can be used for storage and 

retrieval of light [34]. 
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Figure Captions 

Fig. 1 (Color online) Schematic experimental setup for photoluminescence flash 

induced by intense THz pulse. Generated THz pulses are focused onto the GaAs QW 

sample, and the luminescence is detected by a Hamamatsu streak camera coupled to a 

spectrometer with a resolution of about 1 meV. The visible laser beam was directed 

through a small hole in the parabolic mirror used to focus the THz pulse. 

 

Fig. 2 (Color online) (a) Typical streak camera image of the photoluminescence flash 

from the QWs excited at 10 K by both the visible CW laser and THz pulse. The visible 

laser intensity is 0.6 W/cm2 and the peak electric field of THz pulse is 0.77 MV/cm. (b) 

Spectrally integrated transients of the photoluminescence flash with the THz pulse in (a) 

(red solid line) and without the THz pulse (blue dashed line). The dashed arrow 

indicates the arrival time of the THz pulse. (c) Spectra of the time-integrated PL flash 

shown in (a) (red solid line) and the PL emission excited by only the visible CW laser 

with an intensity of 0.6 W/cm2 (blue dashed line). 

 

Fig. 3 (Color online) (a) Visible CW laser power dependence of the flash intensity 

induced by a 0.77-MV/cm THz pulse (solid circle). The solid line to guide the eye 

represents the 0.2-power-law intensity dependence. (b) THz electric field dependence of 

the flash PL intensity (solid circle). The solid curve is a theoretical calculation assuming 

a field-assisted direct-tunneling process described by Eqs. (1) and (2). The inset shows 

temperature dependence of PL excited by a 2.33 eV-CW-laser and PL flash. 

 

Fig. 4 (Color online) Photoluminescence flash intensity induced by an intense THz 

pulse as a function of delay time between the visible and THz pulses. The experimental 

conditions are described in the body of the paper. The solid line is the fitting curve of a 

bi-exponential function. 
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Fig.1 
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Fig. 2 
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Fig. 3 
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Fig. 4 
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