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For three dimensional topological insulators in the Bi2Se3 family, topological surface states with
pz orbitals have a left-handed spin texture for the upper Dirac cone and a right-handed spin texture
for the lower Dirac cone. In this work, we predict a new form of the spin-orbital texture associated
with the px and py orbitals. For the upper Dirac cone, a left-handed (right-handed) spin texture
is coupled to the “radial” (“tangential”) orbital texture, whereas for the lower Dirac cone, the
coupling of spin and orbital textures is the exact opposite. The “tangential” (“radial”) orbital
texture is dominant for the upper (lower) Dirac cone, leading to the right-handed spin texture for
the in-plane orbitals of both the upper and lower Dirac cones. A spin-resovled and photon polarized
angle-resolved photoemission spectroscopy experiment is proposed to observe this novel spin-orbital
texture.

PACS numbers: 73.20.-r, 73.21.-b,71.18.+y

Three-dimensional topological insulators (TIs) are new
states of quantum matter with helical gapless surface
states consisting of odd number of Dirac cones inside
the bulk band gap protected by time-reversal symmetry
(TRS).[1–4] The underlying physical origin of the topo-
logical property of TIs is the strong spin-orbit coupling
(SOC), which plays a similar role as the Lorentz force in
the Quantum Hall state. Due to the SOC interaction, the
spin and momentum are locked to each other, forming a
spin texture in the momentum space for the surface states
of TIs[5–7]. The spin texture has been directly observed
in the spin-resolved angle-resolved photon emission spec-
troscopy (spin-resolved ARPES)[8–12]. The spin texture
gives rise to a non-trivial Berry phase for the topological
surface states and suppresses the backscatterings under
TRS, leading to possible device applications in spintron-
ics.

Besides the spin texture, it has also been shown re-
cently that the atomic p orbitals of the Bi2Se3 family of
topological insulators form a pattern in the momentum
space, dubbed as the orbital texture, for the topologi-
cal surface states[13, 14]. In this work, we find that the
orbital texture found in Ref. [13, 14] is actually not sep-
arated from the spin texture and predict a coupled spin-
orbital texture for the topological surface states. Based
on both the effective k· p theory and ab-initio calcu-
lations, we find, besides the usual locking between the
electron spin and the crystal momentum, the spin tex-
ture is also locked to the atomic orbital texture, which is
dubbed as “spin-orbital texture”. We show that pz or-
bitals have left-handed spin texture for the upper Dirac
cone and right-handed spin texture for the lower Dirac
cone, sharing the same feature as the total spin texture
of the surface states. In contrast, the in-plane orbitals
(px and py orbitals) reveal more intriguing features: for
the upper Dirac cone of surface states, a “radial” orbital
texture is coupled to a left-handed spin texture and a
“tangential” orbital texture is coupled to a right-handed

spin texture. For the lower Dirac cone, the coupling be-
tween spin and orbital textures is exactly opposite. An
electron spin-resolved and photon polarized ARPES ex-
periment is proposed to observe this novel spin-orbital
texture of the surface states of TIs.
The surface states of TIs are described by the Dirac

type of effective Hamiltonian[5, 15]

Hsurf(kx, ky) = ~vf (σ
xky − σykx) , (1)

with the Fermi velocity vf and Pauli matrix σ. The
hexagonal warping effect[16] is ignored which has the
distinct influence only in large momentum region, but
here we are more interested in the low energy physics
with small momentum. The salient feature of this effec-
tive Hamiltonian is the “spin-momentum locking”, which
means for a fixed momentum k, the “spin”, denoted by
the Pauli matrix σ, has a fixed direction for the eigenstate
of the Hamiltonian. Since the “spin” is always perpen-
dicular to the momentum, we can introduce a helicity op-
erator, defined as ĥ = 1

k
ẑ ·(~k×~σ) which commutates with

the Hamiltonian, to determine the handness of the “spin”
texture. For the upper Dirac cone of surface states, the
helical operator ĥ = −1, leading to a left-handed “spin”
texture in the momentum space while for the lower Dirac
cone, ĥ = 1 yields a a right-handed “spin” texture. How-
ever, one should note that here the “spin” is not the real
spin, but the total angular momentum ~J = ~S+ ~L, which
is a combination of the real spin ~S and the orbital an-
gular momentum ~L due to SOC. Consequently, the basis
of the surface effective Hamiltonian (1) are denoted as
|ΨJz=± 1

2

〉 with the lower indices ± 1
2 representing the to-

tal angular momentum along z direction. In order to
understand what is the texture for the real spin ~S, it is
necessary to write down the explicit form of the basis
wavefunction |Ψ± 1

2

〉.
The form of the basis |Ψ± 1

2

〉 can be constructed by

symmetry considerations. Generally the basis |Ψ± 1

2

〉 de-
pends on the momentum k and we can expand it up to
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FIG. 1. (color online) (a), (b) The tangential orbital texture
with the right-handed helical spin texture (a) and the radial
orbital texture with the left-handed helical spin texture (b)
for the upper Dirac cone.

the first order in k as |Ψ± 1

2

〉 = |Ψ(0)

± 1

2

〉+ |Ψ(1)

± 1

2

〉. Here we

are only interested in the p orbitals of Bi and Se atoms in
the topological insulator Bi2Se3 and can decompose the
zeroth-order wavefunction as

|Ψ(0)

± 1

2

〉 =
∑

α

[u0,α|α, pz , ↑ (↓)〉+ v0,α|α, p±, ↓ (↑)〉] (2)

and the first-order wavefunction as

|Ψ(1)

± 1

2

〉 =
∑

α

[±k±(iu1,α|α, p∓, ↑ (↓)〉

+ iv1,α|α, pz , ↓ (↑)〉)∓ iw1,αk∓|α, p±, ↑ (↓)〉]
(3)

where k± = kx ± iky, | ↑〉 and | ↓〉 denote the spin,
|pz〉 and |p±〉 = ∓ 1√

2
(|px〉 ± i|py〉) denote different p or-

bitals, and α denotes indices other than the spin and
orbital, such as atom indices. The above wavefunctions
are constructed by conserving the z-direction total an-
gular momentum Jz. For example, for the first term in
(3), k±, |p∓〉, and | ↑ (↓)〉 carry the angular momentum
±1, ∓1, ± 1

2 respectively, so the z-direction total angular
momentum is ± 1

2 . It is easy to check the other terms
in (3) also carry the z-direction total angular momentum
± 1

2 . More details about the form of the wavefunctions
can be found in the online supplementary materials [17].
u0(1),α, v0(1),α and w1,α are material-dependent param-
eters. By comparing with the ab-initio calculations, we
can take them to be real. |Ψ 1

2

〉 and |Ψ− 1

2

〉 are related

to each other by TRS. The expressions of the basis (2)
and (3) can be substituted into the eigen wavefunctions of

the Hamiltonian (1), |Φ±〉 = 1√
2

[

±ie−iθk |Ψ 1

2

〉+ |Ψ− 1

2

〉
]

,

yielding the following forms of the wavefunctions

|Φ+〉 =
∑

α

[(u0,α − v1,αk)|α, pz, ↑θ〉

− i√
2
(v0,α − u1,αk − w1,αk)|α, pr, ↑θ〉

+
1√
2
(v0,α − u1,αk + w1,αk)|α, pt, ↓θ〉]

(4)

|Φ−〉 =
∑

α

[(u0,α + v1,αk)|α, pz , ↓θ〉

+
i√
2
(v0,α + u1,αk + w1,αk)|α, pr, ↓θ〉

− 1√
2
(v0,α + u1,αk − w1,αk)|α, pt, ↑θ〉].

(5)

Here ~k = (k, θk), | ↑θ (↓θ)〉 = 1√
2
(+(−)ie−iθk | ↑

〉 + | ↓〉) stands for the left-handed (right-handed) he-
lical spin texture and |pr〉 = cos θk|px〉 + sin θk|py〉,
|pt〉 = − sin θk|px〉 + cos θk|py〉 are the radial and tan-
gential orbital textures, as shown in Fig. 1(a) and 1(b),
respectively. From the expressions (4) and (5), we can
clearly see that |pz〉 orbital is coupled to the left-handed
spin texture | ↑θ〉 for the upper Dirac cone and the right-
handed spin texture | ↓θ〉 for the lower Dirac cone. Fur-
thermore, for the upper Dirac cone, the radial orbital
texture |pr〉 is always coupled to the left-handed spin
texture | ↑θ〉 and the tangential orbital texture |pt〉 is al-
ways coupled to the right-handed spin texture | ↓θ〉. The
situation is exactly opposite for the lower Dirac cone.
The expressions (4) and (5) are the main analytical re-

sults of this paper, which show explicitly the spin-orbital
texture. This tells us that one cannot separate the spin
texture from the orbital texture in this system due to
the strong spin-orbit coupling. To confirm our analyti-
cal results, ab-initio method is adopted to calculate the
projection of surface states on the spin and orbital basis,
defined by the quantity

D±
i,η = 〈Φ±|(|pi〉〈pi| ⊗ sη)|Φ±〉, (6)

where pi = px, py, pz for the three p orbitals, s0 = 12×2

denotes the charge part and sx,y,z denote the three Pauli
matrices for the spin. In the following, we will compare
the analytical calculation of the intensity D±

i,η with ab-

initio calculations.
The Vienna Ab-initio Simulation Package (VASP)[18,

19] is employed to carry out ab-initio calculations
with the framework of the Perdew-Burke-Ernzerhof-type
(PBE)[20] generalized gradient approximation (GGA) of
density functional theory[21]. Projector augmented wave
(PAW) pseudo-potentials are used for all of the calcu-
lations in this work[22]. 10×10×10 and 10×10×1 are
used for k-grid of bulk and free-standing calculations, re-
spectively. The kinetic energy cutoff is fixed to 450eV.
6 quintuple layers (QLs) are fixed in the supercell for
free-standing calculations, and the thickness of vacuum
is taken to be 50Å. The lattice constant and the atomic
parameters are directly obtained from experiments. SOC
is included with the non self-consistent calculation. In or-
der to compare with the result of ARPES experiments,
the projections of all the orbitals are only for the first
Se and Bi atoms on the top surface of the free-standing
model.
The surface states of Bi2Se3 consist of a single Dirac

cone at Γ point on one surface inside the large bulk band
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FIG. 2. (color online). (a) The Dirac cone of Bi2Se3 on the
surface with the normal direction [0001] with the spin texture
marked by blue arrows. (b), (c) The projection of pz orbital
and the related in-plane spin texture for upper (b) and lower
(c) Dirac cones. More red means more pz character. The red
arrows represent the in-plane spin texture related to the pz
orbitals. The insets are the schematics of the spin texture
marked by green arrows.

gap (∼ 0.3eV)[5, 23], which provides an ideal material
to study the coupling of spin and orbital textures of sur-
face states. As the starting point, we compare the bulk
band structure of Bi2Se3 with the previous calculation[5]
and find good agreements. The surface states are ob-
tained from the calculation of a free-standing structure
with the normal direction [0001], as shown in Fig. 2(a).
The blue arrows represent the spin texture, where the
spin is mainly lying in plane near the Dirac point. The
spin texture is left-handed for the upper Dirac cone and
right-handed for the lower one, the same as the total
angular momentum texture. To understand the under-
lying physics, we calculate the spin texture for different
atomic orbitals. For pz orbitals, a left-handed helical
spin texture is found for the upper Dirac cone and a
right-handed texture for the lower Dirac cone, as shown
in Fig. 2(b) and 2(c). The schematic of the spin texture
are shown in the inset. Here the background color in-
dicates the projection of pz orbitals, which is isotropic,
and the red arrows represent the corresponding in-plane
spin texture. The spin texture of pz orbitals can be re-
produced with the expressions [D±

pz ,σx
, D±

pz,σy
, D±

pz ,σz
] =

±∑

α(u0,α ∓ v1,αk)
2[sin θk,− cos θk, 0] with ‘±’ for the

upper and lower Dirac cone and ~k = (k, θk) in the polar
coordinate.

The spin textures for in-plane orbitals are shown in
Fig. 3(a) and 3(b) for the upper Dirac cone and in
Fig. 3(c) and 3(d) for the lower Dirac cone, respectively.
We find that the associated spins for px and py orbitals
don’t rotate clockwise or anti-clockwise around the Dirac

(a)

(c)

(b)

(c) (d)

FIG. 3. (color online). (a), (b), (c), (d) The px projection on
the states of upper (a) and lower (c) Dirac cones, and the py
projection of upper (b) and lower (d) Dirac cones. More red
means more px character in (a) and (c), and more red means
more py character in (b) and (d). The red arrows indicate the
in-plane spin texture related to the orbitals. The insets are
the schematics of the spin texture.

point as in the case of pz orbitals, but instead, they take
the form

[D±
px,x

, D±
px,y

, D±
px,z

] = ∓
∑

α

v20,α
2

[sin θk, cos θk, 0] (7)

[D±
py,x

, D±
py,y

, D±
py,z

] = ±
∑

α

v20,α
2

[sin θk, cos θk, 0] (8)

for small k around the Γ point. The corresponding spin
textures are shown schematically in the inset of Fig. 3(a)
and 3(c) for px orbitals in upper and lower Dirac cones
and in the inset of Fig. 3(b) and 3(d) for py orbitals. Un-
like pz orbitals, the amplitude of px and py orbitals for
the surface states is not isotropic, but has 2θk angular de-
pendence around the Fermi surface, as shown in Fig. 4(c).
We may take the difference of the amplitudes between px
and py orbitals, as shown by colors in Fig. 4(a) and 4(b).
Here more red means more px character, and more blue
means more py character. The angular dependence in-
dicates a tangential orbital texture for the upper Dirac
cone and a radial orbital texture for the lower Dirac cone,
as schematically shown by the inset of Fig. 4(a) and 4(b),
respectively. This orbital texture was experimentally ob-
served recently[14]. Furthermore, we also plot the to-
tal spin textures for in-plane orbitals on the same fig-
ure, which show a right-handed texture for both upper
and lower Dirac cones. All these salient feature can be
understood by the wavefunctions (4) and (5). For the
upper Dirac cone, although both | ↑θ〉|pr〉 and | ↓θ〉|pt〉
terms exist in the wavefunction (4), their associated coef-
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FIG. 4. (color online). (a), (b) The tangential orbital texture
with the related in-plane spin texture for the upper Dirac cone
(a) and the radial orbital texture for the lower (b) from ab-

initio calculations. More red means more px character, and
more blue means more py character. The red arrows represent
the total in-plane spin texture related to px and py orbitals.
(c) The px and py projections onto upper and lower Dirac
cones. The solid curves are the px and py projections for the
upper Dirac cone at energy level 0.10eV, and the dashed for
the lower Dirac cone at the energy −0.07eV. The basic feature
is the π period which exactly agrees with the prediction by
the effective model. (d) Orbital polarization Ppx . The energy
of Dirac point is shifted to be zero. The positive value of the
orbital polarization represents the radial orbital texture, and
the negative value represents the tangential orbital texture.
In order to plot more visually, the Ppx for the upper Dirac
cone is inversed, marked by the red color. Ppx is exact zero
at Dirac point, which indicates the transition point between
the tangential and radial orbital textures.

ficients are unequal. When
∑

α(v0,α −u1,αk+w1,αk)
2 >

∑

α(v0,α−u1,αk−w1,αk)
2, | ↓θ〉|pt〉 term dominates over

| ↑θ〉|pr〉 term, dominantly giving a tangential orbital tex-
ture coupled to a right-handed spin texture. Similarly, for
the lower Dirac cone, when

∑

α(v0,α+u1,αk+w1,αk)
2 >

∑

α(v0,α + u1,αk − w1,αk)
2, | ↓θ〉|pr〉 term in the wave-

function (5) is dominant, yielding a radial orbital texture
coupled to a right-handed spin texture. The difference
between px and py orbitals can be calculated directly
as D±

px,0
− D±

py,0
= ∓2 cos 2θk

∑

α [(v0,α ∓ ku1,α)kw1,α],
which indeed shows a 2θk angular dependence, and
the total spin textures for in-plane orbitals can be ob-
tained as [D±

x , D
±
y ] = [D±

px,x
+ D±

py,x
, D±

px,y
+ D±

py,y
] =

4[− sin θk, cos θk]
∑

α(v0,α ∓ ku1,α)kw1,α, which shows a
right-handed spin texture when

∑

α(v0,α∓ku1,α)kw1,α >
0. Especially, if k gets close zero, both the total spin tex-
ture [D±

x , D
±
y ] of the in-plane orbitals and the difference

between px and py orbitalsD±
px,0

−D±
py,0

approaches zero,

also as shown in Fig. 4(a) and 4(b).
Therefore, there is a transition from a tangential or-

bital texture in the upper Dirac cone to a radial orbital
texture in the lower Dirac cone, switching exactly at the
Dirac point. To quantitatively describe this transition,
we introduce a polarization quantity

Ppx
(±) =

Dpx,0(±, θ = 0)−Dpx,0(±, θ = 90)

Dpx,0(±, θ = 0) +Dpx,0(±, θ = 90)
(9)

with ‘±’ for upper and lower Dirac cones. The plot of
Ppx

(±) is shown in Fig. 4(d) where the energy level of
the Dirac point is shifted to zero. In order to show the
plot more visually, we reverse the value of the Ppx

(+) for
the upper Dirac cone plotted with the red. The feature of
Ppx

(±) undoubtedly indicates that the state of the lower
Dirac cone forms a radial orbital texture, and the state of
the upper Dirac cone forms a tangential orbital texture.
The Dirac point is shown to be the exact transition point
from the tangential to radial orbital texture. This is ex-
actly the behavior observed in a recent experiment and
explained within the first principle calculations[14]. The
numerical results fit well to the analytical calculation,
with the expression

Ppx
(±) = ∓ 2

∑

α(v0,α ∓ Eu1,α/~vf )Ew1,α/~vf
∑

α

[

(v0,α ∓ Eu1,α/~vf)2 + E2w2
1,α/~

2v2f

]

(10)
with the energy E. For small E around Dirac point,

Ppx
(±) ∝ ∓

∑
α
v0,αw1,α∑

α
(v0,α)2

2E
~vf

shows the linear dependence

on energy, as found in Fig. 4(d).
Although in-plane orbitals show different spin textures

compared to pz orbitals, the pz orbitals (50%) have larger
magnitude for the states near the Dirac point than the
px and py orbitals (together around 30%). Therefore, the
spin texture for the whole states show left-handed for the
upper Dirac cone and right-handed for the lower Dirac
cone, the same as that of pz orbitals, as well as the total
angular momentum texture.
In order to detect the spin texture of electrons, the

spin-resolved ARPES technology has been developed by
taking advantage of spin-dependent scatting processes
and precisely measuring the magnitude of the asymme-
try in the spin-dependent intensity with perfect spin-
polarimeters.[12] The non-trivial spin texture of surface
states of TIs has been clearly observed by experiments.[8–
12] In addition, the orbital character can be detected
through the photon polarization selection rules[24] based
on the symmetry analysis. With this technology, the or-
bital texture of surface states of Bi2Se3 was reported re-
cently by a polarized ARPES experiment.[14] Therefore,
it is possible to combine these two technologies together
in an electron spin-resolved and photon polarized ARPES
experiment, with both the spin and orbital textures ex-
tracted in the same measurement. The predicted spin-
orbital texture can be directly confirmed in this type of
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experiment, which can explicitly reveal how SOC plays a
role in the real material at the atomic level.
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