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We use confocal microscopy to directly visualize the spatial fluctuations in fluid flow through a
three-dimensional porous medium. We find that the velocity magnitudes and the velocity compo-
nents both along and transverse to the imposed flow direction are exponentially distributed, even
with residual trapping of a second immiscible fluid. Moreover, we find pore-scale correlations in
the flow that are determined by the geometry of the medium. Our results suggest that, despite the
considerable complexity of the pore space, fluid flow through it is not completely random.
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Filtering water, squeezing a wet sponge, and brew-
ing coffee are all familiar examples of forcing a fluid
through a porous medium. This process is also crucial
to many technological applications, including oil recov-
ery, groundwater remediation, geological CO2 storage,
packed bed reactors, chromatography, fuel cells, chemical
release from colloidal capsules, and even nutrient trans-
port through mammalian tissues [1–7]. Such flows, when
sufficiently slow, are typically modeled using Darcy’s law,
|∆p| = µqL/k, where µ is the fluid dynamic viscosity and
k is the absolute permeability of the porous medium; this
law relates the pressure drop ∆p across a length L of the
entire medium to the flow velocity q, averaged over a
sufficiently large length scale. However, while appealing,
this simple continuum approach neglects local pore-scale
variations in the flow, which may arise as the fluid nav-
igates the tortuous three-dimensional (3D) pore space
of the medium. Such flow variations can have impor-
tant practical consequences; for example, they may re-
sult in spatially heterogeneous solute transport through
a porous medium. This impacts diverse situations rang-
ing from the drying of building materials [8], to biological
flows [6, 7, 9], to geological tracer monitoring [1]. Under-
standing the physical origin of these variations, on scales
ranging from that of an individual pore to the scale of
the entire medium, is therefore both intriguing and im-
portant.

Experimental measurements using optical techniques
[10–21] and nuclear magnetic resonance imaging [22–27]
confirm that the fluid speeds are broadly distributed.
However, these measurements often provide access to
only one component of the velocity field, and only for the
case of single-phase flow; moreover, they typically yield
limited statistics, due to the difficulty of probing the flow
in 3D, both at pore scale resolution and over large length
scales. While theoretical models and numerical simula-
tions provide crucial additional insight [1, 24, 25, 28–38],
fully describing the disordered structure of the medium
can be challenging. Consequently, despite its enormous
practical importance, a complete understanding of flow
within a 3D porous medium remains elusive.

In this Letter, we use confocal microscopy to directly
visualize the highly variable flow within a 3D porous
medium over a broad range of length scales, from the
scale of individual pores to the scale of the entire medium.
We find that the velocity magnitudes and the velocity
components both along and transverse to the imposed
flow direction are exponentially distributed, even when
a second immiscible fluid is trapped within the medium.
Moreover, we find underlying pore-scale correlations in
the flow, and show that these correlations are determined
by the geometry of the medium. The pore space is highly
disordered and complex; nevertheless, our results indi-
cate that fluid flow through it is not completely random.

We prepare a rigid 3D porous medium by lightly sin-
tering a dense, disordered packing of hydrophilic glass
beads, with radii 32±2 µm, in a thin-walled square quartz
capillary of cross-sectional area A = 9 mm2. The packing
has length L ≈ 8 mm and porosity φ ≈ 0.41, as measured
using confocal microscopy; this corresponds to a random
loose packing of frictional particles. Scattering of light
from the surfaces of the beads typically precludes direct
observation of the flow within the medium. We overcome
this limitation by formulating a mixture of 82 wt% glyc-
erol, 12 wt% dimethyl sulfoxide, and 6 wt% water, laden
with 0.01 vol% of 1 µm diameter fluorescent latex mi-
croparticles; this composition matches the fluid refractive
index with that of the glass beads, enabling full visual-
ization of the flow through the pore space [39]. Prior to
each experiment, the porous medium is evacuated under
vacuum and saturated with CO2 gas, which is soluble in
the tracer-laden fluid; this procedure eliminates the for-
mation of trapped bubbles. We then saturate the pore
space with the tracer-laden fluid, imposing a constant
volumetric flow rate Q = 0.2 mL/hr; the average inter-
stitial velocity is given by q/φ ≡ (Q/A)/φ = 15 µm/s,
and thus the typical Reynolds number is < 10−3. The
tracer Peclet number, quantifying the importance of ad-
vection relative to diffusion in determining the particle
motion, is > 103.

To directly visualize the steady-state pore-scale flow
[40], we use a confocal microscope to acquire a movie of



2

FIG. 1: (a) Schematic showing porous medium and imaging
geometry. A portion of the 2D map of velocity magnitudes
within the medium is shown for (b) single-phase flow, and (c)
flow with trapped residual oil. Black circles in (b) show beads
making up the medium, while additional black regions in (c)
show residual oil. Scale bars are 500 µm long, while color
scale shows speeds ranging from 0 (blue) to 12q/φ (red).

100 optical slices in the xy plane, collecting 15 slices/s, at
a fixed z position several bead diameters deep within the
porous medium. Each slice is 11 µm thick along the z axis
and spans a lateral area of 912 µm × 912 µm in the xy
plane [Figure 1(a)]. To visualize the flow at the scale of
the entire medium, we acquire additional movies, at the
same z position, but at multiple locations in the xy plane
spanning the entire width and length of the medium. We
characterize the flow field using particle image velocime-
try, dividing each optical slice into 16129 interrogation
windows, and calculating the displacement of tracer par-
ticles in each window by cross-correlating successive slices
of each movie. By combining the displacement field thus
obtained for all the positions imaged, and dividing the
displacements by the fixed time difference between slices,
we generate a map of the two-dimensional (2D) fluid ve-
locities, u, over the entire extent of the porous medium.
This protocol thus enables us to directly visualize the
flow field, both at the scale of the individual pores and
at the scale of the overall medium.

The flow within the porous medium is highly variable,
as illustrated by the map of velocity magnitudes shown
in Fig. 1(b). To quantify this behavior, we calculate the
probability density functions (pdfs) of the 2D velocity
magnitudes, u = |u|, velocity orientation angles relative
to the imposed flow direction, θ, and the velocity com-
ponents both along and transverse to the imposed flow
direction, uL = u cos θ and uT = u sin θ, respectively.
Consistent with the variability apparent in Fig. 1(b), we
find that both the velocity magnitudes and orientations
are broadly distributed, as shown by the blue circles in
Fig. 2(a-b). Interestingly, the pdf of u decays nearly ex-
ponentially, with a characteristic speed ≈ 0.5q/φ, con-
sistent with the results of recent numerical simulations
[41].

The pore space is highly disordered and complex; as a
result, we expect flow through it to be random, and thus,
the motion of the fluid transverse to the imposed flow di-
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FIG. 2: Probability density functions of 2D (a) normalized
velocity magnitudes, u/(q/φ), (b) velocity orientation an-
gles, θ, (c) normalized velocity component along the imposed
flow direction, uL/(q/φ), and (d) normalized velocity com-
ponent transverse to the imposed flow direction, uT /(q/φ).
Blue circles and red squares show statistics of single-phase
flow through media comprised of 32 µm and 75 µm radius
beads, respectively, while green triangles show statistics of
flow through the medium comprised of 32 µm radius beads,
with trapped residual oil.

rection to be Gaussian distributed [38, 42]. As expected,
the measured pdf of uT is symmetric about uT = 0; how-
ever, we find that it is strikingly non-Gaussian, again ex-
hibiting an exponential decay over nearly four decades in
probability, with a characteristic speed ≈ 0.25q/φ [blue
circles in Fig. 2(d)]. The pdf of uL similarly decays ex-
ponentially, consistent with results from previous NMR
measurements [23, 43]; moreover, the characteristic speed
along the imposed flow direction is ≈ 0.5q/φ, double the
characteristic speed in the transverse direction [blue cir-
cles in Fig. 2(c)]. These results indicate that flow within
a 3D porous medium may, remarkably, not be completely
random.

To elucidate this behavior, we characterize the spatial
structure of the flow by examining the length scale de-
pendence of the statistics shown in Fig. 2. We do this
by calculating the velocity pdfs for observation windows,
centered on the same pore, of different sizes. Similar to
the pdfs for the entire medium, the pdfs for windows
one pore in size are broad; however, they have a different
shape, as exemplified by the diamonds in Fig. S1 [40]. By
contrast, the pdfs for larger observation windows, even



3

those just a few pores in size, are similar to those for the
entire medium; two examples are shown by the crosses
and stars in Fig. S1, corresponding to windows two and
ten pores across, respectively. This suggests that the
variability of flow within the entire porous medium re-
flects a combination of the flow variability within the
individual pores and the geometry of the pore space.
Another clue to the physical origin of this non-random

behavior comes from close inspection of the flow field in
Fig. 1(b): we observe tortuous “fingers”, approximately
one pore wide and extending several pores along the im-
posed flow direction, over which the velocity magnitudes
appear to be correlated. To quantify these correlations,
we subtract the mean velocity from each 2D velocity vec-
tor to focus on the velocity fluctuations, δu; we then
calculate a spatial correlation function that averages the
scalar product of all pairs of velocity fluctuation vectors
separated by a distance R = |R|,

Cuu(R) ≡
〈

∑

j δu(rj) · δu(rj +R)
∑

j δu(rj) · δu(rj)

〉

(1)

The angle brackets signify an average over all xy direc-
tions, and the sums are taken over all positions rj [44, 45].
For small R, Cuu(R) decays precipitously from one, as
shown by the blue circles in Fig. 3; this decay is nearly
exponential [Fig. 3, inset], with a characteristic length
scale of order one pore [46]. Intriguingly, however, we
also observe weak oscillations in Cuu(R) at even larger
R; this indicates the presence of slight, but non-zero,
correlations in the flow that persist up to distances span-
ning several pores. We hypothesize that these oscilla-
tions reflect the geometry of the pore space formed by
the packing of the beads. To test this idea, we compare
the shape of Cuu(R) with that of the pore-space pair
correlation function, f(R), of a random packing of beads
similar to that comprising our porous medium; this func-
tion describes the probability of finding a point of the
pore space at a distance R away from another point in
the pore space. Similar to Cuu(R), f(R) also shows os-
cillations [47]; these reflect the local packing geometry of
the spherical beads [48]. Moreover, the peaks in Cuu(R)
occur at R ≈ 1, 2, 2.8, and 3.7 bead diameters, as indi-
cated in the inset to Fig. 3, in excellent coincidence with
those observed in f(R) [40]. This close agreement con-
firms that the correlations in the flow are determined by
the geometry of the pore space.
This disordered geometry forces each fluid element to

follow a tortuous path through the medium, traveling a
total distance larger than L. Averaging the distances
traveled by all the fluid elements yields an effective dis-
tance traveled

√
αL, where α > 1, often referred to as

the hydrodynamic tortuosity, provides an important and
commonly-used measure of the variability of the flow.
Acoustic [50], electrical [50], pressure [51], NMR [52–54],
and dispersion [55] measurements, as well as a theoret-
ical calculation [56], yield α ≈ 2 for a porous medium
similar to ours. Within the picture presented here, the
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FIG. 3: Spatial correlation function of velocity fluctuation
vectors, Cuu(R), decays with distance R. Blue circles and
red squares are for single-phase flow through media comprised
of 32 µm and 75 µm radius beads, respectively, while green
triangles are for flow through the medium comprised of 32 µm
radius beads, with trapped residual oil. Inset shows the same
data, plotted with semilogarithmic axes; dashed line indicates
an exponential decay with characteristic lengthscale ∼ 1 pore.
Arrows indicate positions of peaks in Cuu.

distance traveled by each fluid element is approximately
L/ cos2 θ [57]; we thus use our measured velocity orien-
tations [blue circles in Fig. 2(b)] to directly calculate the
tortuosity. We find α = 1.80, in good agreement with
the previously obtained values. This provides additional
confirmation of the validity of our picture.

To test the generality of our results, we perform similar
measurements on another 3D porous medium with beads
of larger radii, 75±4 µm. The average interstitial velocity
of the imposed flow is q/φ = 34 µm/s. Similar to the case
of the smaller beads, we observe broad, exponentially-
decaying velocity pdfs [red squares in Fig. 2]; moreover,
the pdfs for both porous media collapse when the veloc-
ities are rescaled by q/φ. We again quantify the spatial
correlations in the flow using the function Cuu(R). As in
the case of the smaller beads, Cuu(R) decays exponen-
tially for R < 1 bead diameter, and also exhibits slight
oscillations at even larger R, as shown by the red squares
in Fig. 3. The close agreement between the measure-
ments on both porous media confirms that our results
are more general.

Many important situations, such as oil recovery,
groundwater contamination, and geological CO2 storage,
involve flow around discrete ganglia of a second, im-
miscible, fluid trapped within the pore space [1]. This
trapping dramatically alters the continuum transport,
presumably due to modifications in the pore scale flow
[39, 58, 59]. However, investigations of this behavior are
woefully lacking; scattering of light from the ganglia sur-
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faces typically precludes direct visualization of the tracer-
laden fluid flow around them. We overcome this challenge
by formulating a second non-wetting fluid composed of
a mixture of hydrocarbon oils; this composition is care-
fully chosen to match its refractive index to that of the
wetting tracer-laden fluid and the glass beads, thereby
enabling full visualization of the tracer-laden fluid flow
[39, 40]. To trap residual ganglia of the oil, we flow it
for 30 min at a rate of 10 mL/hr through the porous
medium comprised of the smaller beads; we then reflow
the tracer-laden fluid at a rate of 0.1 mL/hr, correspond-
ing to a capillary number Ca ≡ µq/γ ≈ 10−5, where
γ ≈ 13 mN/m is the interfacial tension between the two
fluids. This protocol leads to the formation of discrete
ganglia that remain trapped within the pore space, as in-
dicated in Fig. 1(c) [60]. The tracer-laden fluid continues
to flow around these ganglia; we directly visualize this
steady-state flow using confocal microscopy, re-acquiring
movies of optical sections at the same positions as those
obtained prior to oil trapping.
Similar to the previous case without residual trapping,

the flow is highly variable, as illustrated by the map of
velocity magnitudes shown in Fig. 1(c). Because the gan-
glia occlude some of the pore space, the characteristic
speed of the tracer-laden fluid is larger, ≈ 1.2q/φ [green
triangles in Fig. 2(a)]; moreover, because the tracer-laden
fluid must flow around the ganglia, more velocities are
oriented transverse to the flow direction [green triangles
in Fig. 2(b)]. As in the case without residual trapping,
we observe broad, exponentially-decaying pdfs for the ve-
locity components [green triangles in Fig. 2(c-d)]; how-
ever, these pdfs are significantly broader, indicating that
residual trapping introduces additional variability to flow
within a 3D porous medium. We again use the mea-
sured velocity orientations [green triangles in Fig. 2(b)]
to directly calculate the tortuosity, α. Consistent with
previous indirect measurements [61], we find α = 2.24,
higher than the tortuosity measured in the previous case

of single-phase flow; this further reflects the additional
flow variability introduced by residual trapping.
We quantify the spatial correlations in this flow using

the function Cuu(R). Interestingly, as in the previous
case without residual trapping, Cuu(R) decays exponen-
tially for R < 1 bead diameter, also exhibiting slight
oscillations for even larger R at the same positions, as
shown by the green triangles in Fig. 3. This indicates
that the flow remains correlated, even when a second im-
miscible fluid is trapped within the medium; moreover,
the structure of these correlations is again determined by
the geometry of the pore space.
Our measurements quantify the strong velocity varia-

tions in single- and multi-phase flow within a 3D porous
medium. We find that the velocity magnitudes and the
velocity components both along and transverse to the im-
posed flow direction are exponentially distributed. More-
over, we present direct evidence that the flow is correlated
at the pore scale, and that the structure of these corre-
lations is determined by the geometry of the medium.
The pore space is highly disordered and complex; nev-
ertheless, our results suggest that flow through it is not
completely random.
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