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The forces exerted on small objects by beams of light
have attracted considerable interest because of their ap-
plication to optical micromanipulation. Gradients in the
light’s intensity give rise to the conservative forces that
are responsible for optical trapping [1]. Gradients in the
phase control radiation pressure [2]. No such role was as-
cribed to light’s polarization until Albaladejo, Marqués,
Laroche and Sáenz reported that the curl of the spin an-
gular momentum density contributes an additional term
to the radiation pressure [3]. Contrary to this claim, how-
ever, no spin-curl force acts on small illuminated objects,
as we now demonstrate.
The vector potential of a monochromatic beam of light

of frequency ω may be written as

A(r, t) = u(r) e−iωt ǫ̂(r), (1)

where u(r) is the amplitude of the beam, and

ǫ̂(r) =

3
∑

j=1

aj(r) e
iϕj(r) êj (2)

is the polarization. The polarization’s component along
coordinate êj has relative amplitude aj(r) and phase

ϕj(r). Normalization requires
∑3

j=1 a
2
j(r) = 1.

The force that such a beam of light exerts on a small
optically isotropic object is given in the Rayleigh dipole
approximation by [4]

F(r) =
ω2
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, (3)

where α = α′ + iα′′ is the object’s polarizability. Equa-
tion (3) is valid for particles small enough that spatial
variations in the light’s instantaneous electromagnetic
field may be ignored. It appears as Eq. (7) in Ref. [3]
and is the basis for that Letter’s results.
Substituting Eqs. (1) and (2) into Eq. (3) yields an

equivalent expression for the time-averaged force,

F(r) =
ω2

4
α′

∇u2(r)+
ω2

2
α′′ u2(r)

3
∑

j=1

a2j (r)∇ϕj(r). (4)

The first term on the right-hand side of Eq. (4) is the
intensity-gradient force. The second is a generalization of
the phase-gradient force reported in Ref. [2] that is valid
for arbitrary polarizations. It may be identified with the
scattering force experienced by the particle [1–3].

Equation (4) reveals that the spin angular momentum
plays no role in F(r). This may be appreciated because
the time-averaged spin angular momentum density [5],

s(r) = i
ω

2µc2
u2(r) ǫ̂(r)× ǫ̂∗(r), (5)

involves cross terms in the components of the polariza-
tion, whereas Eq. (4) does not. Here, c is the speed of
light in a medium of permeability µ.
Spin-curl forces do arise for particles that are larger

than the wavelength of light [6]. Their absence in the
dipole approximation is remarkable because it means
that the radiation pressure experienced by a Rayleigh
particle is not simply proportional to the Poynting vec-
tor, as is usually assumed. This surprising insight was
brought to light in Ref. [3]. Reference [3] goes on to
suggest, however, that the curl of the spin angular mo-
mentum density contributes to the force experienced by
a small illuminated object, The correct expression for the
dipole force in Eq. (4) demonstrates that it does not.
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