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Analysis of complex gene regulation networks gives rise to a landscape of metastable phenotypic
states for cells. Heterogeneity within a population arises due to infrequent noise-driven transitions
of individual cells between nearby metastable states. While most previous works have focused on
the role of intrinsic fluctuations in driving such transitions, in this paper we investigate the role of
extrinsic fluctuations. First, we develop an analytical framework to study the combined effect of
intrinsic and extrinsic noise on a toy model of a Boolean regulated genetic switch. We then extend
these ideas to a more biologically relevant model with a Hill-like regulatory function. Employing
our theory and Monte Carlo simulations, we show that extrinsic noise can significantly alter the
lifetimes of the phenotypic states and may fundamentally change the escape mechanism. Finally,
our theory can be readily generalized to more complex decision making networks in biology.
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Noise-driven switching between coexisting metastable
states plays a key role in many systems in physics, chem-
istry, and biology [1–4]. Besides thermal or intrinsic noise
(IN) that drives switching [5], such systems often experi-
ence extrinsic or environmental noise (EN) from the noisy
environment or from being coupled to another fluctuating
system [1]. Noise-driven escape from a metastable state
while under the influence of EN has been previously stud-
ied in the context of population biology and population
genetics (see e.g. [6–8]), where it has been shown that
e.g. EN can drastically decrease the population’s mean
extinction time [7, 8]. Moreover, recently there has been
a large effort to predict the onset of EN-driven critical
transitions and regime shifts in ecosystems, see e.g. [9].

In cellular biology, feedback-based gene regulatory net-
works have been shown to give rise to cellular phenotype
(or epigenetic) landscapes with infrequent transitions of
individual cells between multiple metastable states [10].
Driven by IN and EN [11], these transitions result in
clonal populations of cells displaying multiple heritable
phenotypes, whose coexistence, when stable over exper-
imental time scales, can be considered a consequence of
ergodicity breaking [12]. In developmental processes, the
stability of the phenotypic states, quantified by the mean
switching time (MST) to go from one state to another,
is typically very long to ensure stable differentiation [13].
In microbial systems, however, MSTs that are no more
than a few orders of magnitude longer than the cell cycle
can provide a beneficial source of diversity in genetically
identical populations. Such population heterogeneity has
been proposed to give rise to a selective advantage via
bet-hedging strategies, e.g., bacterial persistence [14].

Most previous studies of gene expression dynamics, in-
cluding our own treatments [15], have focused on the role
of IN (reviewed in [16]). Recently, however, gene expres-
sion under EN has also come under study [11, 17, 18].

Whereas IN is defined as the intracellular variability in
identically regulated genes due to stochastic gene expres-
sion, EN is defined as intercellular variability due to fluc-
tuations during gene expression that equally affect all
genes within a cell. EN arises due to cell-to-cell vari-
ation in the numbers of ribosomes, RNA polymerases,
and other key gene expression machinery, and varia-
tion in other slowly changing cellular parameters such
as growth rate. EN has been shown to dominate vari-
ations in protein copy number, particularly above num-
bers of O(10) [18]. In studies of genetic switches, EN has
been shown to induce bistability [19, 20], vary the dis-
tribution tails [20] and modify switching times [21]. Yet,
previous studies have not provided fundamental insight
as to the interplay between IN and EN in the switching
process, i.e., how the MSTs and switching paths deviate
according to EN strength, correlation time and statistics.
Elucidating the relationship between IN and EN during
switching is crucial to understanding how EN affects pop-
ulation heterogeneity in metastable systems.

In this Letter we study the combined influence of IN
and EN on noise-driven switching in a simple bistable
self-regulating gene (SRG) with positive feedback. We do
so by casting the problem onto a set of coupled stochas-
tic differential equations for the protein density and noise
magnitude in the spirit of Ref. [2]. We then use a semi-
classical treatment and Hamilton formulation to system-
atically study the effect of EN statistics, magnitude and
correlation time, on the switch’s dynamics, and in par-
ticular, on the MSTs. We also study how EN affects the
bistability range and escape mechanism of a system that
is intrinsically noisy. All analytical results are corrobo-
rated by Monte Carlo (MC) simulations. Our analysis
shows that EN correlation time plays a key role in deter-
mining both the stability of the phenotypic state and the
escape mechanism. This indicates that in biological sys-
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tems, where the correlation time is thought to be long,
phenotype switching may be driven primarily by EN.

Let n(t) be the protein copy number and N � 1 be the
protein abundance in the hi state. Proteins are produced
at a rate f(n), which is any Hill-like function to provide
positive feedback, and decay with rate 1. We assume
that proteins decay through dilution by cell division, thus
time is measured in units of cell cycles. The mean protein
density x̄(t) = n̄(t)/N satisfies

˙̄x = f(x̄)− x̄. (1)

For simplicity we take f(x) = α0+(1−α0)θ(x−x0), where
θ(x) is the Heaviside step function, and α0 < x0 < 1.
Such a step-like regulatory function may be encountered,
e.g., when multiple binding sites control a DNA transi-
tion between looped and unlooped regulatory states [22].
Eq. (1) leads to a bistable system with three fixed points
x1 < x2 < x3, where x1 = α0 and x3 = 1 are attracting
fixed points of the low and hi states respectively, while
x2 = x0 is repelling. Typically, α0 � 1 so x3 � x1.

To model IN, we use the master equation (ME) for
Pn(t) - the probability to find n proteins at time t:
Ṗn = f(n − 1)Pn−1 + (n + 1)Pn+1 − [f(n) + n]Pn. For
simplicity we focus on the weak-noise regime 1−x0 � 1,
where (without loss of generality) the “switching barrier”
between the hi and low states is small. Here, the ME is
accurately approximated by the following Fokker-Planck
equation (FPE) for the probability P (x = n/N, t) [3, 23]:

∂tP = −∂x{[f(x)−x]P}+1/(2N) ∂2x{[f(x)+x]P}. (2)

Starting from the vicinity of the hi state, the sys-
tem rapidly forms a quasi-stationary distribution (QSD)
about the hi state, which slowly leaks through the un-
stable point x = x0 [23–25]. In general, the metastable
state decays as P (x, t) ' π(x)e−t/τ where π(x) is the
QSD and τ is the MST. Employing the WKB ansatz
π(x) ∼ e−NS(x) for the QSD [24], where S(x) is called
the action function and px(x) ≡ S′(x) is the momentum,
in the leading order of N � 1, Eq. (2) gives rise to a
stationary Hamilton-Jacobi equation (HJE):

H(x, px) = px[f(x)− x] + (p2x/2)[f(x) + x] = 0. (3)

Switching occurs along the zero-energy trajectory
px(x) = −2[f(x)− x]/[f(x) + x] of (3). For x0 < x ≤ 1,
px(x) = −2(1 − x)/(1 + x), which for 1 − x0 � 1 sat-
isfies |px(x)| � 1. This yields S(x) =

∫ x
px(x′)dx′ =

2[x − 2 ln(1 + x)], and the QSD around x = 1: π(x) ∼
e−N [S(x)−s(1)] with standard deviation σin ≡ N−1/2 due
to IN. As τhi→low ∼ π(x0)−1 [23, 25], we thus have [26]

ln τhi→low'N [S(x0)−S(1)]'(N/2)(1−x0)2≡∆S0, (4)

which is applicable as long as σin = N−1/2 � 1− x0.
Next, we incorporate EN in the form of one or more

fluctuating rates. We assume that cell-to-cell variability
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FIG. 1: (Color online) τhi→low versus the relative strength for
white τc = 10−2 (a) and long-correlated τc = 103 (b+c) EN.
MC simulations (the symbols) with noise in the production (o)
and decay (×) rates (that are indistinguishable) are compared
with theory (lines): Eq. (8) (a) and Eq. (10) (b+c). Here
N = 5000, α0 = 0.01, and x0 = 0.93 (a+b) or x0 = 0.915 (c).
The values of τhi→low are measured in units of cell cycles.

in transcription and translation rates causes, e.g., the
protein production rate to fluctuate. In the hi state
the production rate then becomes 1 + ξ(t), where ξ(t)
is fluctuating with finite correlation time. As we are
interested in the hi → low transition we ignore fluctu-
ations in α0. We take ξ(t) to be Ornstein-Uhlenbeck
(OU) noise [3]: positively correlated Gaussian noise with
zero mean, variance σ2

ex and correlation time τc, satisfy-
ing 〈ξ(t)ξ(t′)〉 = σ2

exe
−|t−t′|/τc . The OU process satisfies

the following Langevin equation

ξ̇ = −ξ/τc +
√

2σ2
ex/τc η(t), (5)

where η is white Gaussian noise, 〈η(t)η(t′)〉 = δ(t−t′) [27].
Here, σ2

ex and τc are characteristic of the environment
and the cell’s regulatory network and are generally un-
known. Non-Gaussian statistics for EN have also been
proposed [20], but further theoretical and experimental
work is needed to uncover the source and form of EN.

To study the interplay between IN and EN, we com-
bine Eq. (5) with the underlying IN dynamics [Eq. (2)].
Defining the fluctuating production rate f̃(x, ξ) = α0 +
(1−α0+ξ)θ(x−x0), drift term A(x, ξ) = f̃(x, ξ)−x, dif-
fusion coefficient B(x, ξ) = f̃(x, ξ) + x, and the EN and
IN variance ratio, V ≡ σ2

ex/σ
2
in = Nσ2

ex, we obtain a 2-D
FPE for the joint probability P (x, ξ, t) to find density x
and noise magnitude ξ at time t [2, 28, 29]:

∂tP = −∂x {A(x, ξ)P}+ ∂ξ {(ξ/τc)P}
+1/(2N) ∂2x {B(x, ξ)P}+ 1/(2N) ∂2ξ {(2V/τc)P} . (6)

Employing the WKB ansatz π(x, ξ)∼e−NS(x,ξ) for the
QSD, Eq. (6) yields a HJE: H(x, ξ, px, pξ) = pxA(x, ξ)−
ξpξ/τc+(p2x/2)B(x, ξ)+p2ξV/τc = 0, with momenta px ≡
∂xS and pξ ≡ ∂ξS. The HJE can be solved by considering
the Hamilton equations ẋi = ∂piH and ṗi = −∂xiH:

ẋ = A+ pxB , ṗx = −px[∂xA+ (px/2)∂xB]

ξ̈ ' ξ/τ2c − 2pxV/τc, (7)
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FIG. 2: (Color online) τhi→low as function of τc for various
EN strengths: σex/µ = 0.01 (top left), 0.1 (top right), and
0.2 (bottom left). The lines are the analytical predictions of
Eq. (8) (solid) and Eq. (10) (dotted). The lower right panel
(see also inset) shows τoptc versus EN strength: MC results
(symbols) confirm the functional dependence on σex predicted
by Eq. (11) (line). Here N = 5000, α0 = 0.01 and x0 = 0.93.

where we have combined the equations for ξ̇ and ṗ
ξ

to a

single equation for ξ̈ and kept terms up to O(px)� 1.
Eqs. (7) can be solved numerically for generic EN,

which yields the corresponding action function S(x, ξ) =∫
px(x, ξ)dx + p

ξ
(x, ξ)dξ, and QSD. Analytical progress

can be made in two limits: short-correlated white EN,
τc � 1, and long-correlated adiabatic EN, τc � 1.

For white EN, we neglect ξ̈ in the third of Eqs. (7) [8],
which yields ξ ' 2pxV τc < 0, see below. Substituting ξ
into the first of Eqs. (7), we find for x > x0: ẋ = f(x)−
x+2pxV τc+px[f(x)+x+2pxV τc], which originates from
an effective white-noise Hamiltonian: H ' px[f(x)−x]+
(p2x/2)[f(x) + x+ 2V τc], where we have neglected O(p3x)
terms. Solving H = 0, we find px(x) = −2(1 − x)/(1 +
x+ 2V τc). This yields the MST in the white-EN regime:

ln τhi→low ' ∆S0/(1 + V τc), (8)

confirmed by MC simulations, see Figs. 1+2 and SM. In
Fig. 2 and below, µ denotes the QSD’s average.

Now, to deal with long-correlated EN, we note that
when τc � 1, during the rare fluctuation that takes the
system from the hi to the low state, the system sam-
ples an almost constant value of the noise ξ = ξ0 [8].
For a constant ξ0, the hi fixed point becomes 1 + ξ0.
The optimal value of ξ0 is found by minimizing the cost
of switching given noise realization ξ0, ln τhi→low(ξ0) '
(N/2)(1 − x0 + ξ0)2, against the (absolute value of the)
statistical weight of ξ, Nξ20/(2V ). By doing so, we find
ξopt = −(1 − x0)V/(1 + V ), where |ξopt| < 1 − x0 as
expected. Plugging ξopt into τhi→low(ξ0) we find [30]

ln τhi→low ' ∆S0(1 + V )−2. (9)

Eq. (9) is valid for not too strong an EN, V 2 � ∆S0,
which can only be satisfied when σex � 1− x0.
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FIG. 3: (Color online) (a+b) The location of the stochas-
tic fixed points of Eq. (1) with f(x) given by (12), for EN
with τc = 103 and σex/µ = 0.01 (a) and σex/µ = 0.05 (b).
The solid lines show the deterministic fixed points. (c-e) The
steady-state 2-D PDFs of finding protein number n and in-
stantaneous EN magnitude ξi for σex/µ = 0.05 and x0 = 0.42
(c), 0.48 (d), and 0.56 (e). Here N = 300, and α0 = 0.05.

In the opposite strong-EN regime, σex & 1−x0 � σin,
it turns out that IN can be neglected, and the MST is
governed by the mean time it takes the OU process to
reach position x starting from x = 0 at t = 0. Here, for
σex & 1− x0 we obtain that τhi→low = O(τc), see SM.

This analysis gives rise to a correction in the adiabatic
regime τc � 1. Since ln τhi→low ' ln τc at σex & 1 − x0,
and ln τhi→low ' ∆S0 at σex = 0, Eq. (9) becomes

ln τhi→low ' ln τc + (∆S0 − ln τc)(1 + V )−2, (10)

which compares well with MC results, see Figs. 1+2 [31].
Eqs. (8) and (10) show that EN of moderate strength

can dramatically lower the MSTs, e.g., from 105 to ≤10
cell cycles (see Fig. 2). In microbial populations, where
bet-hedging strategies require that heterogeneity devel-
ops relatively quickly, EN can therefore move the switch-
ing dynamics to biologically relevant time scales.

Figure 2 shows that for a given EN strength σex there
exists an optimal τc for which the MST is minimal. To
evaluate τoptc we add the white- and adiabatic-EN contri-
butions [Eqs. (8) and (10)] for the MST, and differentiate
the result with respect to τc. For 1− x0 � 1, we find

τoptc ∼ (1− x0)2/σ2
ex, (11)

whose dependence on σex is confirmed by Fig. 2.
We also studied how EN affects bistability using the SRG

model (1) with a more realistic Hill-type production rate

f(x) = α0 + (1− α0)x2/(x2 + x20). (12)

Noise-induced bistability has been studied in detail in the
context of deterministic systems subject to external noise
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(see e.g. Refs. [2]). Yet, here our underlying system is
intrinsically noisy; given α0 the system is bistable over
a range of x0 values [32]. Our aim is to investigate how
adding EN alters the bistability region and mechanism of
escape, as well as the effect of EN on the MSTs and the
steady state probability distribution functions (PDFs).
To do so we ran MC simulations with a fluctuating decay
rate 1+ξ(t), to model cell-to-cell variability in the growth
rate, and focused on adiabatic EN with τc = 103.

To determine the influence of the EN on the bistabil-
ity range, we calculated the PDFs at various x0 values
from long-time simulations and extracted the position(s)
of the sole maximum (monostable) or the two maxima
separated by a minimum (bistable). These values we in-
terpreted as stochastic equivalents to the deterministic
fixed points. Our findings indicate that already for mod-
erate EN strength σex/µ = 0.05, the locations of the
stochastic fixed points strongly deviate from their deter-
ministic locations [see Fig. 3(b)], which causes the range
of x0 over which the system is bistable to greatly in-
crease. This effect becomes more pronounced as the EN
strength further increases. For σex/µ = 0.2 the system
was bistable over the entire range of x0 sampled (0.3-0.7).

Furthermore, see lower panels of Fig. 3, we calculated
the 2-D PDFs of finding protein number n and instan-
taneous fluctuation ξi. Fig. 3(d) shows a case where the
system is deterministically bistable. Here, for weak ξi the
system undergoes IN-driven switching as expected. Yet,
when the decay reaction is sampling the highest (low-
est) rates due to EN, the system exists only in the low
(hi) state and switches deterministically to the appropri-
ate stable state. This effect appears in the 2-D PDFs as
two alternate switching paths: in the hi→ low pathway
ξi > 0, and in the low → hi pathway ξi < 0. Thus, the
system’s bistability is strongly affected by adiabatic EN
driving the system between different regions of parameter
space with alternate fixed point configurations.

Fig. 3(c+e) show the case where the system is deter-
ministically monostable. When ξi is small one can see
that the system behaves as though it has a single fixed
point. However, when a large fluctuation occurs in the
correct direction it can shift the system to a region of pa-
rameter space that is bistable. This effect gives rise to the
increased bistability range observed in the simulations.

Finally, we calculated the MSTs for different EN
strengths. Fig. 4 upper panels show that as the EN mag-
nitude increases, the steepness of the curve versus x0 is
reduced for both τlow→hi and τhi→low. Such changes in
the MSTs serve to make the less favorable state more
populated across a wide range of x0 values. This is
illustrated in the lower panels of Fig. 4 showing the
probability of the system being in the low or hi state:
Plow = τ−1hi→low/(τ

−1
hi→low + τ−1low→hi) and Phi = 1− Plow.

Here, as the EN magnitude is increased, not only does the
bistability range expand but also the range at which the
population is macroscopically heterogeneous (e.g. 1 part
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FIG. 4: (Color online) (a) τlow→hi and (b) τhi→low for various
EN strengths and τc = 103. The population fraction Plow (c)
and Phi (d) in the low and high states in steady state.

in 100). Furthermore, the probability tails decrease much
slower than a system with only IN, which may explain
experimental observations of cells persisting in lowly pop-
ulated phenotypes across unexpected conditions.

Our theoretical results can be readily generalized to
more complex higher-dimensional models of cellular de-
cision making, where in addition, EN is present in many
kinetic rates. Importantly, due to a lack of experimental
data regarding the EN properties, our theory may allow
to deconvolute the effects of IN and EN on switching from
switching trajectories of individual cells subject to EN.
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