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We report a combined experimental and theoretical study of the unusual ferromagnetism in the
one-dimensional copper-iridium oxide Sr3CuIrO6. Utilizing Ir L3 edge resonant inelastic x-ray scat-
tering, we reveal a large gap magnetic excitation spectrum. We find that it is caused by an unusual
exchange anisotropy generating mechanism, namely strong ferromagnetic anisotropy arising from
antiferromagnetic superexchange, driven by the alternating strong and weak spin-orbit coupling on
the 5d Ir and 3d Cu magnetic ions, respectively. From symmetry consideration, this novel mecha-
nism is generally present in systems with edge-sharing Cu2+O4 plaquettes and Ir4+O6 octahedra.
Our results point to unusual magnetic behavior to be expected in mixed 3d − 5d transition-metal
compounds via exchange pathways that are absent in pure 3d or 5d compounds.

PACS numbers: 75.30.Et, 71.70.Ej, 78.70.Ck, 75.10.Dg

The interest in strongly correlated electronic systems
has recently been extended from 3d transition-metal com-
pounds (TMCs) to 5d compounds. Usually the strength
of electron correlation is characterized by the ratio of the
local Coulomb repulsion to the electronic bandwidth. A
large value of this ratio (∼ 8) is common in 3d TMCs such
as superconducting cuprates [1]. Since 5d orbitals are
more extended in space and host weaker Coulomb inter-
actions than 3d orbitals, 5d TMCs are generally expected
to be weakly correlated. However, it has been pointed out
[2–4] that the relative weakness of the Coulomb interac-
tion is offset by the strong spin-orbit coupling (SOC),
which is typically ∼ 0.5 eV for 5d elements. This strong
SOC leads to a significant splitting and narrowing of
the electronic bands, and pushes 5d TMCs toward the
strongly correlated regime. Indeed, the SOC-driven Mott
metal-insulator transition was shown to exist in a vari-
ety of 5d iridium oxides [2–14]. An important conse-
quence is the entanglement of the orbital and spin de-
grees of freedom in the resulting localized magnetic mo-
ments (termed ‘isospins’), which can lead to unusual su-
perexchange pathways and to new physics, for example,
the proposed spin-liquid state as encoded in the Kitaev
model [15] in the honeycomb-lattice (Li,Na)2IrO3 [7] and
possible superconductivity in the square-lattice Sr2IrO4,
which shows a similar magnetic ordering and dynamics
to the cuprates [5].

The purpose of this letter is to demonstrate that ma-
terials containing both 3d and 5d magnetic ions can host
new physics absent in either pure 3d or pure 5d com-
pounds - because of the unique combination of unusual

exchange pathways and special geometries, a result of the
strong SOC of the 5d electrons and the differing coordina-
tions of the 3d and 5d sites. Such materials will offer new
avenues to engineer exotic magnetic behavior. To demon-
strate this, we have chosen to study the one-dimensional
copper-iridium oxide, Sr3CuIrO6, as a prototype for such
mixed 3d − 5d systems. The crystal structure of this
compound [Fig. 1(a)] is reminiscent of both the super-
conducting cuprates and iridium-based Mott insulators.
Specifically, it contains with chains of alternating Cu and
Ir the Cu2+ in a planar oxygen coordination and the Ir4+

in an octahedral oxygen coordination. The physical nov-
elty of this material is demonstrated by the emergence
of ferromagnetic order, which is rare in pure cuprates
or iridates (the closely related materials Sr3CuPtO6 and
Sr3ZnIrO6 are antiferromagnetic) and was used to syn-
thesize random quantum spin chain paramagnetism in
Sr3Culr1−xPtxO6 [16, 17]. There is to date no micro-
scopic understanding of this unique phenomenon of fer-
romagnetism.

Here we use Ir L3 edge resonant inelastic x-ray scat-
tering (RIXS) [5, 14, 18, 28] to reveal a large gap mag-
netic excitation spectrum in Sr3CuIrO6, and show that it
is well described by the effective S = 1/2 ferromagnetic
Heisenberg model with an Ising-like exchange anisotropy.
We present a microscopic derivation of this model, and
find that the arrangement of alternating isospins and real
spins on the edge-sharing Ir4+O6-Cu2+O4 chain leads
to an unexpected effect, namely that the ferromagnetic
anisotropy arises from the antiferromagnetic superex-
change. Our results point to an entirely new class of
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FIG. 1. (a) Cu-Ir chain of Sr3CuIrO6 where Cu2+ and Ir4+

are coordinated by an oxygen plaquette and octahedron, re-
spectively. The IrO6 octahedral tilting is denoted by α ' 150◦

and the octahedral distortion by β ' 82◦. In the ideal case of
α = 180◦ and β = 90◦, the O2 and O5 and their neighboring
Cu and Ir atoms form a square. (b) and (c) Schematic draw-
ings of Cu 3dx2−y2 and Ir 5dxy Wannier orbitals, φCu and
φIr,xy, respectively. Note the considerable tails on the oxygen
sites due to the metal-oxygen hybridization. (d) Schematic
map of the overlap density, ρ = φCuφIr,xy. Red (blue) repre-
sents positive (negative) values.

magnetic behavior in mixed 3d− 5d TMCs.

RIXS measurements.—The energy and momentum de-
pendence of the magnetic excitation spectrum in a self-
flux-grown Sr3CuIrO6 single crystal was studied by us-
ing Ir L3 edge RIXS, for which dipole transitions ex-
cite and deexcite a 2p3/2 core-electron to the 5d orbitals
[5, 14, 18]. The measurements were carried out at beam-
line 9-ID, Advanced Photon Source, in a horizontal scat-
tering geometry. A Si(844) secondary monochromator
and a R=2m Si(844) diced analyzer were utilized. The
overall energy resolution of this setup was ∼ 45 meV
(FWHM) and the momentum resolution was better than
0.07 of the Brillouin zone (BZ) length along the Cu-Ir
chain direction. All data were collected at 7 K.

Fig. 2(a) shows the low-energy RIXS spectra for the
momentum transfer q along the chain direction in the
BZ in which the unit cell contains one Cu ion and one
Ir ion. A shoulder appears near the elastic line and dis-
perses along the chain direction. No dispersion is seen
in this feature for momentum transfers perpendicular to
the chain direction (not shown). We attribute this shoul-
der to a one-dimensional magnon mode. Its dispersion is
plotted in Fig. 2(b), and shows two salient features: (i)
The minimum energy located at the Γ point is not zero,
but rather shows a large gap of ∼ 30 meV, comparable
to the magnon bandwidth. (ii) The dispersive behavior
follows the periodicity of the (one Ir plus one Cu) chain

FIG. 2. (a) RIXS spectra for different momentum transfer
along the chain direction, compared with the off-resonant elas-
tic line (dotted line). (b) the extracted magnetic dispersion
from the scans shown in (a). The scans in (a) are offset to
match with their wavevector transfer along the chain direction
presented in (b).

unit cell very well, approximately in the form of cos(qa)
where a is the nearest Ir-Ir distance.

These observations cannot be explained by conven-
tional models. The simple linear chain ferromagnetic
Heisenberg model proposed for this system [16] is gap-
less. In the related iridate Sr3ZnIrO6, two mechanisms
have been proposed for a possible gap there. However,
neither can be at work here. In the first, singlet dimers
were proposed based on the alternating chain antiferro-
magnetic Heisenberg model [17]. However, this cannot
occur in Sr3CuIrO6, since it is ferromagnetic. In the sec-
ond, an Ising-like exchange anisotropy is added to the
S = 1/2 Heisenberg model [19]. However, the magnon
dispersion of the ferromagnetic model of this type, in
which one does not distinguish between Cu and Ir atoms
(i.e., the unit cell contains one magnetic ion), is in the
form of cos(qa/2) [20, 21], in disagreement with the dis-
persion observed above. Our data thus require unconven-
tional magnetism in this system, and make a general call
for a new understanding of systems with mixed 3d − 5d
magnetic ions.

Microscopic mechanism.—To understand the micro-
scopic origin of the ferromagnetism and the anisotropy
in this system, we start by analyzing the geometry and
symmetry of the Cu-Ir chain.

A portion of a Cu-Ir chain of Sr3CuIrO6 is shown in
Fig. 1(a). The Cu2+ ion is located at the center of an oxy-
gen plaquette. The only magnetic orbital φCu centered
on a Cu2+ ion is of x2−y2 symmetry and is antisymmet-
ric with regard to the Cu-Ir mirror plane [Fig. 1(b)].

The Ir4+ ion lies in the center of an oxygen octahedron
which shares an edge with neighboring CuO4 plaquettes
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and experiences tilting and an orthorhombic distortion
characterized by angles α ' 150◦ and β ' 82◦, respec-
tively, as defined in Fig. 1(a). The octahedral ligand field
renders the three Ir t2g (5dxy, 5dxz, and 5dyz) orbitals
relevant to the low-energy physics, while the two unoc-
cupied Ir eg energy levels are ∼ 3 eV higher [14]. We shall
show below that the octahedral tilting and distortion are
also relevant to the magnetism in Sr3CuIrO6, and that
the role of the Ir 5dxy orbital is completely different from
those of the Ir 5dxz and 5dyz orbitals.

The Ir 5dxy orbital, φIr,xy, is symmetric with regard to
the Cu-Ir mirror plane [Fig. 1(c)], and thus orthogonal
to φCu, even in the presence of the octahedral tilting and
distortion. As a result, electron hopping between these
two orbitals is prohibited and so is the superexchange
process. Thus, the leading magnetic interaction between
them is the direct exchange interaction, JF, which is fer-
romagnetic [23, 24]. From the measured magnon band-
width (Fig. 2), we conclude that JF is of order of dozens
of meV. This is surprising, since direct exchange in TMCs
is usually very small. The unusually large JF comes from
the fact that the tails of φIr,xy and φCu actually overlap
well around each of O2 and O5 in Fig. 1(d) [22], similar
to the large direct exchange ferromagnetism proposed for
a Cu2+-(VO)2+ heterobinuclear complex [25].

By contrast, the Ir 5dxz (5dyz) orbital has a tail of
pz symmetry around O2 (O5); its overlap with φCu is
vanishing everywhere, leading to a negligible direct ex-
change. Actually, the Ir 5dxz/5dyz orbitals are not or-
thogonal to φCu when α is tilted away from 180◦, and
electron hopping between them is allowed. Therefore,
the leading magnetic interaction between them is the an-
tiferromagnetic superexchange.

The above considerations lead to the following effective
magnetic Hamiltonian for Sr3CuIrO6:

H = −JF

∑
〈m,n〉

~Sm,x2−y2 · ~Sn,xy

+ JAF

∑
〈m,n〉

~Sm,x2−y2 · (~Sn,yz + ~Sn,zx)

+ λ
∑
n

~Ln · ~Sn + ∆
∑
nσ

d†n,xy,σdn,xy,σ, (1)

where m denotes a Cu site, n an Ir site, and 〈m,n〉means
nearest neighbors. There is one hole at each site, as im-
plied by Cu2+ and Ir4+. ~Sn,γ =

∑
µν d

†
n,γ,µ~σµνdn,γ,ν/2

where ~σµν is the Pauli matrix and dn,γ,µ is the annihi-
lation operator of an electron with spin µ =↑, ↓ (or ±)
and orbital γ = xy, xz, yz on the Ir site n. λ is the SOC
constant on the Ir sites and ∆ is the strength of the or-
thorhombic distortion of the IrO6 octahedra. −JF < 0 is
the ferromagnetic direct exchange coupling between the
Ir 5dxy and Cu 3dx2−y2 orbitals. JAF > 0 is the an-
tiferromagnetic superexchange coupling between the Ir
5dxz/5dyz and Cu 3dx2−y2 orbitals.

The different types of magnetic interaction, JAF and

FIG. 3. Schematic of unusual exchange pathways between a
Cu down spin and an Ir down isospin. All the arrows indi-
cate the real-spin orientations, and open arrows mean partial
occupation in the isospin states [Eq. (2)]. Dashed lines indi-
cate antiferromagnetic (AF) or ferromagnetic (FM) exchange;
they cooperate to generate the ferromagnetic spin-isospin in-
teraction. Ir 5dxz and 5dyz orbitals contribute only to the
diagonal part of the exchange processes (see text), leading to
the easy-z-axis anisotropy.

JF, are usually expected to compete with each other.
However, we show below from symmetry consideration
that this understanding is qualitatively changed by the
presence of strong λ. The three Ir t2g orbitals form a re-
duced space with an effective orbital angular momentum
leff = 1 with its z component lz = 0 for dxy and lz = ±1
for idyz±dzx [26]. The leading energy scales λ = 0.44 eV
and ∆ = 0.31 eV split them into three doublets with the
lowest-energy one clearly separated from the other two by
0.58 and 0.81 eV, respectively [14]. The wave functions
of the lowest-energy doublet are of the form [22]

|φ0,η〉 =
1√

2 + p2
(pdxy,η +idyz,η̄ +ηdzx,η̄), η = ±, (2)

where p=0.65 (p=0,1 for ∆ = ∞, 0, respectively). With
the z component of total angular momentum jz = ±1/2,
they form an effective S = 1/2 ‘isospin’ on the Ir site,
~sn =

∑
ηη′ |φ0,η〉~σηη′〈φ0,η′ |/2. Here we have adopted

the same coordinate system for all the real spins and
isospins in the lattice. Eq. (2) reveals that the Ir 5dxy
and 5dxz/5dyz orbitals have opposite real spin orienta-
tions (sz = ±1/2) in the isospin basis, because sz =
jz − lz. Therefore, the tendency of the spin in the Ir
5dxy (5dxz/5dyz) orbital to be parallel (antiparallel) to
neighboring Cu spins can be satisfied simultaneously via
this spin-orbit-coupled Kramers doublet, as illustrated in
Fig. 3. Hence, the JAF and JF terms counterintuitively
cooperate to generate the ferromagnetic interaction be-
tween Cu spins and Ir isospins.

Furthermore, we find that by symmetry the Ir 5dxy
and 5dxz/5dyz orbitals make completely different con-
tributions to the isospin-flipping processes [from η = +
to − or vice versa in Eq. (2)], in which dxy,+ ↔ dxy,−
does not change lz and idyz,− + dzx,− ↔ idyz,+ − dzx,+
changes lz by ±2. Since ~Sn,xy and ~Sn,yz+ ~Sn,zx in Eq. (1)
are lz-preserving operators, the former contributes to the
isospin-flipping processes and the latter does not. This
means that the contributions of the JF and JAF terms
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in Eq. (1) to the spin-isospin dynamics are isotropic and
anisotropic, respectively. Thus, the strength of the re-
sulting Ising-like exchange anisotropy is positively cor-
related with the relative importance of the Ir 5dxz/5dyz
orbitals, which can be substantially enhanced by octahe-
dral titling for increasing JAF/JF or by octahedral dis-
tortion (∆ > 0) for increasing 1/p2, the relative weight
of the Ir 5dxz/5dyz orbitals in |φ0,η〉.

It is noteworthy that in the context of the Kitaev
model, an Ising-like ferromagnetic exchange between two
Ir isospins due to the simultaneous presence of SOC and
Hund’s rule coupling was suggested for (Li,Na)2IrO3 [7].
We emphasize that the present symmetry-based mecha-
nism for creating the Ising-like ferromagnetic exchange
between a Cu spin and an Ir isospin is entirely different
because it is independent of Hund’s rule coupling.

To describe this strongly anisotropic spin dynamics,
we derive from Eq. (1) the following effective S = 1/2
spin-isospin Hamiltonian [22]:

Heff = H(0) +H(2),

H(0) = −J1

∑
〈m,n〉

{
Sxms

x
n + Syms

y
n + γ1S

z
ms

z
n

}
, (3)

H(2) = −J2

∑
〈〈m,m′〉〉

{
SxmS

x
m′ + SymS

y
m′ + γ2S

z
mS

z
m′

}
,

where 〈m,n〉 and 〈〈m,m′〉〉 mean the nearest Cu-Ir and

Cu-Cu neighbors, respectively. ~Sm is a shorthand nota-
tion of ~Sm,x2−y2 . H(0) and H(2) contain zeroth-order and
second-order terms in perturbation theory, respectively.
We find J2/J1 ∼ 0.1; thus, H(0) governs main physics.
H(2) is to be shown to have dramatic impact on the atom-
specific magnon spectral weight. The strength of the de-
rived exchange anisotropy, γ1 − 1 = (2/p2)JAF/JF, is
proportional to JAF/JF and 1/p2, indeed.

Note that due to the difference of the (Landé) g-
factors for spins and isospins an applied uniform mag-
netic field along the z axis is seen by the system as a
staggered one. Indeed, the isospin’s magnetic moment
is µB(2S − l) [26] and from Eq. (2) it follows that its g
factor is gJ=2(p2 − 4)/(p2 + 2)=−2.96 for the z compo-
nent, in contrast to gS=2 of the Cu spin. As a result, the
saturation magnetization is µB|gJ + gS |/2 ' 0.5µB per
unit cell, close to the experimental value of 0.6µB rather
than 2µB expected for a conventional system containing
two unpaired electrons [17]. Thus our theory provides an
explanation of this outstanding puzzle.

H(0) is integrable [20, 21]. Its spectrum consists of
a fundamental magnon mode and multi-magnon bound
states. The single magnon dispersion is ω(q) = J1[γ1 −
cos(qa/2)], where a is the nearest Ir-Ir distance and q a
momentum along the Cu-Ir chain. This expression coin-
cides with the spin-wave dispersion calculated using the
Holstein-Primakoff transformation. Together with H(2),

FIG. 4. (a) Calculated magnon dispersion (lines), compared
with the experimental data (solid squares). (b) The Ir partial
spectral weights for the lower (solid line) and upper (dashed
line) branches in (a). J1 = 21 meV, γ1J1 = 53.5 meV, J2 =
2.4 meV, γ2J2 = 0.6 meV are used, which satisfy the theoretic
constraints [22].

the latter method yields [22]:

ω∓(q) =
1

2
[2γ1J1 + γ2J2 − J2 cos(qa)]

∓ 1

2

√
[γ2J2 − J2 cos(qa)]2 + 4J2

1 cos2(qa/2).

The second-neighbor interaction opens another gap of
size (1+γ2)J2 at q = π/a in the middle of the band. The
lower branch ω−(q) can be fit in good agreement to the
experimental data, as shown in Fig. 4(a).

The missing of the upper branch ω+(q) spanning from
55 to 75 meV in our RIXS data has two implications.
One, there exists a channel for the single-magnon excita-
tion at ω+(q) to decay into the two-magnon continuum,
which starts at about 60 meV (twice the single-magnon
spectral gap), or the multi-magnon bound states, which
lie around 50 meV [22]. Due to strong SOC at Ir sites, lat-
tice irregularities could act as an effective magnetic field
applying on the isospins; such random magnetic field can
lead to the decay. This scenario agrees with the previous
observation of defect-induced spin-glass behavior in this
material [27].

The other implication is called for the possible insuf-
ficiency of the decay near the zone boundary q = π/a,
where ω+(q) is very close to ω−(q). It is likely that since
the RIXS data were taken at the Ir L3 edge, only the
Ir weight is visible. The weights of Ir character [22] in
the lower (−) and upper (+) branch of the spin-wave
dispersion, I∓(q), are shown in Fig. 4(b). Overall, I−(q)
(solid line) is much larger than I+(q) (dashed line) and it
follows the chain BZ, in agreement with the RIXS data.
Note that it is the tiny J2 that dramatically changes the
weight distribution; otherwise I∓(q) ≡ 1/2 for J2 = 0.
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Although this argument alone is not adequate near the
zone center, where both I±(q = 0) ' 1/2, the band top
nature of ω+(q = 0) implies a strong decay there—both
implications are at work to yield the invisibility of ω+(q)
in our experiment. For a direct experimental verification
of the above arguments, we note that ω+(q=π/a) has the
full Cu weight (the Cu partial spectral weight is 1−I∓(q)
by the sum rule). Hence, ω+(q) should be detectable by
the near zone boundary Cu L3 edge RIXS [28] and this
will be pursued in the feature [29].

In summary, we have presented a combined experi-
mental and theoretical study of the unusual ferromag-
netism in Sr3CuIrO6. We have consistently revealed a
strongly anisotropic spin dynamics in this material, and
found that an unusual exchange anisotropy generating
mechanism, namely strong ferromagnetic anisotropy aris-
ing from antiferromagnetic superexchange, is generally
present in the system with edge-sharing Cu2+O4 plaque-
ttes and Ir4+O6 octahedra. Our results demonstrate that
mixed 3d−5d compounds can generate distinct exchange
pathways and thus novel magnetic behavior that are ab-
sent in pure 3d or 5d compounds.
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[19] C. Lampe-Önnerud, M. Sigrist, and H.-C. zur Loye, J.
Solid State Chem., 127, 25 (1996).

[20] C. N. Yang and C. P. Yang, Phys. Rev., 151, 258 (1966).
[21] J. D. Cloizer and M. Gaudin, J. Math. Phys., 7, 1384

(1966).
[22] See Supplementary Material at

[http://link.aps.org/supplemental/xxxxxxxxx] for
technical details.

[23] J. Kanamori, J. Phys. Chem. Solids, 10, 87 (1959).
[24] P. W. Anderson, Phys. Rev., 79, 350 (1950).
[25] O. Kahn, J. Galy, Y. Journaux, J. Jaud, and

I. Morgenstern-Badarau, J. Am. Chem. Soc., 104, 2165

(1982).
[26] J. Kanamori, Prog. Theor. Phys. 17, 177 (1957).
[27] A. Niazi, E. V. Sampathkumaran, P. L. Paulose, D. Eck-

ert, A. Handstein, and K.-H. Müller, Phys. Rev. B, 65,
064418 (2002).

[28] M. P. M. Dean, R. S. Springell, C. Monney, K. J. Zhou,
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