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We demonstrate the existence of topological superconductors (SC) protected by mirror and time
reversal (TR) symmetries. D-dimensional (D=1, 2, 3) crystalline SCs are characterized by 2D−1

independent integer topological invariants, which take the form of mirror Berry phases. These
invariants determine the distribution of Majorana modes on a mirror symmetric boundary. The
parity of total mirror Berry phase is the Z2 index of a class DIII SC, implying that a DIII topological
SC with a mirror line must also be a topological mirror SC but not vice versa, and that a DIII SC
with a mirror plane is always TR trivial but can be mirror topological. We introduce representative
models and suggest experimental signatures in feasible systems. Advances in quantum computing,
the case for class D, and topological SCs protected by rotational symmetries are pointed out.

The advent of topological insulators protected by time
reversal (TR) symmetry [1, 2] opened the door to the
search for other topological states with different symme-
tries [3–11]. The idea replacing the winding number of p
wave pairing [12–14] by the Berry phase of a single heli-
cal band further provided a promising route to engineer
topological superconductivity using an ordinary super-
conductor (SC) [15–20]. The hallmark of these class D
topological states, governed by TR symmetry breaking
and particle hole (PH) redundancy, is the existence of
Majorana modes on the boundaries. There is presently a
major effort to detect their unique signatures [21–31] such
as resonant Andreev reflection and fractional Josephson
effect. Recently, realizations of TR invariant topological
SCs have also been proposed [31–38] in a variety of set-
tings. One might wonder whether a crystalline symmetry
can also lead to a different class of topological SCs.

Remarkably enough, there exists an even richer class
of topological SCs protected by mirror and TR symme-
tries, as we will demonstrate in this letter. D-dimensional
(D=1, 2, 3) crystalline SCs in this symmetry class are
characterized by 2D−1 integer invariants determined by
the mirror Berry phases of the negative energy bands
along the mirror and TR invariant lines. These deter-
mine the distribution of Majorana modes on a mirror
symmetric boundary. Interestingly, the parity of total
mirror Berry phase is the Z2 index of a class DIII SC,
i.e., a fully gapped SC respecting TR symmetry. This
relation leads to two important implications: in 1D and
2D a DIII topological SC with a mirror line must also be
a topological mirror SC but not vice versa; in 2D and 3D
a DIII SC with a mirror plane is always trivial in class
DIII (TR trivial) but can be topological in the class with
mirror symmetry (mirror topological).

Now we shall develop a simple symmetry argument,
without any calculation, to demonstrate the stability of
N Majorana Kramers pairs (MKP) [39] at a mirror sym-
metric end. First consider a 1D DIII topological SC,
which exhibits a single MKP at the end [31, 32]. In the
two dimensional subspace spanned by the two Majorana
modes, we may choose a gauge in which the antiuni-
tary TR and PH symmetry operators are Θ = σyK and

Ξ = σxK, respectively, with K the complex conjugation
and σ the Pauli matrices. Now consider N such SCs that
physically coincide and each is a mirror line. This mirror
symmetry must be described in this space byM = −iσz
(up to a sign), since it squares to −1 and commutes with
Θ and Ξ. HM , the mirror symmetric couplings among
the N MKPs, must satisfy the constraints of mirror, TR,
and PH symmetries: [HM ,M] = {HM ,Π} = 0, where
Π ≡ ΞΘ = −iσz is the chiral (unitary PH) symmetry op-
erator. Since Π =M it follows that HM = 0, indicating
that there are no mirror symmetric perturbations that
can lift the degeneracy of the resulting N MKPs. This
analysis suggests that, in the presence of mirror-line sym-
metry, a 1D DIII SC is characterized by an integer, rather
than a Z2, invariant that determines N .
Mirror line topological invariant.— In 1D a DIII SC

with a mirror line respects three independent symmetries:

HφM =MHφ , HφΘ = ΘHφ̄ , HφΠ = −ΠHφ , (1)

where φ ≡ k, φ̄ ≡ −φ, and k is the momentum. We are
free to choose the pre phase factors of Θ and Ξ such that
{Θ,Π} = 0 and Π† = Π. The integer invariant is re-
lated to the Berry phase of the negative energy states
around the 1D Brillouin zone (BZ). Since this Berry
phase is gauge dependent, however, the gauge needs to
be fixed. This can be accomplished by introducing a con-
tinuous deformation that trivializes the Hamiltonian by
relaxing the chiral symmetry while keeping mirror and
TR symmetries. We thus add an artificial dimension θ
(−π/2 ≤ θ ≤ π/2) as follows,

H(θ, φ) = H(φ) cos θ + Π sin θ . (2)

H(θ, φ) inherits the following symmetry constraints

M−1H(θ, φ)M = H(θ, φ) , (3a)

Θ−1H(θ, φ)Θ = H(−θ,−φ) , (3b)

Π−1H(θ, φ)Π = −H(−θ, φ) . (3c)

Applying Stokes’ theorem, the loop integral of Berry con-
nection [40] along the equator (θ = 0) may be written as
the surface integral of Berry curvature [40] Ωθφ over the
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north hemisphere (0 ≤ θ ≤ π/2), as shown in Fig. 1(b).
This procedure amounts to choosing a gauge in which the
wavefunctions are able to contract into the nonsingular
north pole. The mirror symmetry (3a) allows us to label
the bands with mirror eigenvalues, and the total and the
mirror Berry phases (in units of 2π) of the valence bands
are well defined as

γt = Cv,+N + Cv,−N , γm = Cv,+N − Cv,−N . (4)

Here Cs,iN(S) is the surface integral of Ωs,iθφ over the north

(south) hemisphere normalized by 2π, s = c (v) denotes
the conduction (valence) bands, i = + (−) represents the
mirror eigenspace with iM = + (−), and the sum over
unspecified band indices is implicit.

The TR symmetry (3b), the relaxed chiral symmetry
(3c), and the completeness relation for the energy bands∑
n∈all |n〉〈n| = 1 respectively lead to

Ωs,iθφ = −Ωs,̄i
θ̄φ̄
, Ωs,iθφ = −Ωs̄,i

θ̄φ
, Ωs,iθφ = −Ωs̄,iθφ . (5)

As a result, Cs,iα = −Cs,̄iᾱ = −C s̄,iᾱ = −C s̄,iα . In light of
the fact that

∑
α=S,N Cs,iα is an integer quantized Chern

number, we conclude that

γt = 0 , γm = Z . (6)

A qualitative understanding of (6) is possible. For
a mirror line, each mirror subspace respects only chiral
symmetry and thus has an integer topological invariant,
like a 1D insulator in class AIII [3, 4]. In a gauge where
the wavefunctions are contractible to a nonsingular point,
the valence-band Berry phase uniquely characterizes the
winding number of its associated Hamiltonian. It is TR
(or PH) symmetry that requires the two invariants be-
longing to different mirror subspaces opposite to each
other. Consequently, the total Berry phase must vanish
while the mirror Berry phase can survive.

As a consequence, a 1D DIII SC with a mirror line
exhibits |γm| MKPs at the end. For a 2D DIII SC with
a mirror line, there exist two independent integer num-
bers of helical Majorana edge states at the mirror sym-
metric edge [41], i.e., |γm(0)| at ky = 0 and |γm(π)| at
ky = π along x̂. In the presence of more than one mir-
ror lines, different edges may have different Majorana
distributions, since different mirrors lead to different in-
variants. We note that the parity of total mirror Berry
phase (−1)γm in 1D or (−1)γm(0)±γm(π) in 2D is the Z2

invariant in class DIII. When γm(0)± γm(π) is odd, at a
mirror asymmetric edge there also emerges an odd num-
ber of helical Majorana edge states protected by TR sym-
metry. Since a nontrivial Z2 index implies a nonzero γm
a DIII topological SC with a mirror line must also be a
topological mirror SC, but not vice versa.

Mirror invariant plane.— We now consider the case for
a 2D DIII SC with a mirror plane in which bands can be
labeled with mirror eigenvalues. In each mirror subspace,
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FIG. 1. (a) A sketch of various mirror symmetries. (b) A 1D
BZ (red) and an artificial 2D sphere where the chiral symme-
try is relaxed. (c) A 2D BZ with mirror invariant lines (red
and green) and nontrivial Berry curvature. (d) A 2D BZ as a
mirror invariant plane in which Berry curvature vanishes.

the completeness relation requires Ωv,ixy + Ωc,ixy = 0 while

the chiral symmetry restricts Ωv,ixy = Ωc,ixy. Therefore,

Ωs,ixy = 0, implying both the total and the mirror Chern
numbers Cv,+±Cv,− are zero. Applying Stokes’ theorem
as shown in Fig. 1(d), the vanishing of the integral of the
mirror Berry curvature over a half cylinder with −π ≤
kx ≤ π and 0 ≤ ky ≤ π imposes that

γm(0) = γm(π) , (7)

i.e., the mirror Berry phases are the same along the two
TR invariant lines ky = 0 and π. As a result, the num-
ber of helical Majorana edge states at ky = 0 and π is
the same. Furthermore, different edges may have differ-
ent numbers of helical Majorana edge states, indicating
that the topological classification of mirror-plane SCs is
Z × Z. Again, the parity of total mirror Berry phase
(−1)γm(0)±γm(π) is the DIII Z2 index. Because of (7),
a 2D DIII SC with a mirror plane is always Z2 trivial,
however, it can be mirror topological.

Interestingly, any change of γm from ky = 0 to π would
imply the existence of bulk nodes which are topologically
protected. On the edge parallel to ŷ, there would emerge
different numbers of helical Majorana edge states across

TABLE I. Topological classification of TR invariant SCs and
various mirror SCs in zero to three dimensions.

Mirror Point Mirror Line Mirror Plane

Dim D = 0 D = 1 D = 1 D = 2 D = 2 D = 3

DIII 0 Z2 Z2 Z2 Z2 Z

Mirror 0 0 Z Z× Z Z× Z Z4
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ky = 0 and π, separated by the projected nodes. This
phenomenon is an analog to the edge state of graphene
and the surface Fermi arc of Weyl semimetal [42].

A mirror plane can also exist in a 3D SC. Assuming
Mz = −iσz mirror symmetry, (7) can be generalized as
γm(kq = 0, kz) = γm(kq = π, kz), where kz = 0 or π is a
mirror invariant plane and kq denotes kx or ky. Clearly,
there are four independent mirror Berry phases for a 3D
mirror SC. At the surface normal to k̂q × k̂z, there dis-
tributes |γm(0, 0)| helical Majorana surface states cen-
tered at (0, 0) and at (π, 0), and |γm(0, π)| surface states
at (0, π) and at (π, π), respectively. Different mirror sym-
metries have difference invariants and even one mirror
invariant plane may have quite different invariants along
different directions, resulting in surface-dependent dis-
tributions of Majorana modes. A 3D SC in class DIII is
classified by an integer invariant, however, mirror sym-
metry requires this integer to be zero. In the basis where
the chiral symmetry operator is Π = τz, a 3D DIII SC
may be described by Hk = Qxkτx +Qykτy, and its integer
invariant can be understood as [3, 33]

Nw =
1

24π2

∫
d3k εijkTr[Q†k∂iQkQ

†
k∂jQkQ

†
k∂kQk] , (8)

which is the homotopy ofQk≡Qxk−iQ
y
k. Since [Mz,Π]=0

and Hk̄z =M−1
z HMz the integrand of (8) transforms as

a pseudoscalar under mirror operation, i.e., ρw(Mzk) =
−ρw(k). This leads to Nw = 0, as in the inversion sym-
metric case. Therefore, a 3D DIII SC with a mirror plane
must be TR trivial, however, it can be mirror topological.

A 0D or 1D DIII SC with a mirror point can be also
considered. At the mirror invariant point, the number of
positive and negative energy states is the same because
of PH symmetry, and only the Z2 parity of the number
of negative energy states can be well defined, given that
the total charge is not conserved. TR symmetry further
requires an even parity because of Kramers degeneracy.
Therefore, there is no topological classification for a mir-
ror invariant point. Table I summarizes our results in
different mirror classes and in different dimensions.

Representative models.— The simplest model of topo-
logical mirror superconductivity is described by

H = (t cos k + λR sin k σz − µ)τz + ∆1 cos k τx , (9)

which may be realized in a Rashba wire that is proximity-
coupled to a nodeless s± wave SC [31, 32], e.g., an iron-
based SC [43, 44]. In this hybrid system, t is the near-
est neighbor hopping, µ is the chemical potential, and
λR is the strength of Rashba spin-orbit coupling. σ are
the Pauli matrices of electron spin while τ are the Pauli
matrices in Nambu PH notation. The order parameter
∆1 > 0, induced by the proximity effect, leads to a s±
wave pairing that switches sign between k = 0 and π.
(9) has TR (Θ = σyK), PH (Ξ = iσyτyK), and chiral
(Π = τy) symmetries. When |µ| < λR, a positive (nega-
tive) pairing is induced for the inner (outer) pair of Fermi
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FIG. 2. Left: the two energy bands split by the Rashba spin-
orbit coupling; the pink and green lines depict that the pairing
potential switch signs at k = ±π/2. Right: the winding of the
vector h±(µ = 0) as k varies from 0 to 2π, clockwise (counter-

clockwise) for h+(−). The solid and dashed lines distinguish
the cases for iMz = ±1.

points, realizing a 1D Z2 topological SC in class DIII [31].
In addition, there is a mirror (Mz = −iσz) symmetry in
the bulk and at the ends. Therefore, this state must also
be a topological mirror SC, as predicted earlier. (9) can
decompose into h± ·τ with ± the eigenvalues of iMz. As
shown in Fig. 2, (h±z , h

±
x ) have fixed points (±λR − µ, 0)

at k = ±π/2. When |µ| < λR, the windings of h± both
enclose the origin once but with opposite orientations as
k varies from 0 to 2π, indeed leading to γM = 1.

The higher degeneracies of Majorana modes promoted
by mirror symmetry are more amazing. A Majorana
quartet can be achieved on the π-junction of two topolog-
ical SCs modeled by (9). Indeed, a N -wire system with
each wire described by (9) realizes a topological mirror
SC with γm = N , as long as their couplings do not close
the bulk gap or break mirror symmetry. This has been
analyzed in the very beginning from the symmetry point
of view. Alternatively, this can be understood by gener-
alizing (9) to HN = λN sin(Nk)σz τz + ∆N cos(Nk) τx,
where we set µ = t = 0 and the spin-orbit coupling and
pairing become Nth-neighbor processes as a result of the
enlarged unit cell with N sites. HN is the minimal model
that describes a topological mirror SC with γm = N .

Furthermore, HN can be readily generalized to

H = [λN sin(Nkx)σz − λM sin(Mkz)σx] τz

+ [∆0 + ∆N cos(Nkx) + ∆M cos(Mkz)] τx , (10)

which describes a 2D DIII SC with a Mz mirror line.
When ∆0 6= ±∆N ±∆M , (10) has a full gap. Along the
mirror invariant lines kz = 0 and π, we obtain

γm = Nsgn(λN∆N )Θ(|∆N | − |∆0 + eiMkz∆M |) . (11)

The N = M = 1 case can describe a Rashba layer
proximity-coupled to a nodeless s± wave SC, in which one
mirror Berry phase vanishes while the other is one when
|∆0| < 2|∆1|. Because the total mirror Berry phase has
an odd parity, this 2D topological mirror SC is also a DIII
topological SC, consistent with a previous result [31].
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Another experimentally feasible model that describes
a 2D DIII SC with mirror lines is

H = [βk2
q − µ+ α(k × σ)zsz +msx]τz + ∆szτx , (12)

which can be realized in two physical systems. The first is
a thin film [45] of topological insulator with a mirror sym-
metry (Mq=−iσq), e.g., the Bi2Se3 family. The α-term
describes the top and bottom (sz=±1) surface states that
have opposite helicities, while the smaller β-term denotes
the surface state curvature which is the same on both sur-
faces [46]. m is a trivial mass due to the finite size tun-
neling between the two surfaces. When |∆| > |m|, the
system is a DIII topological SC since the two surfaces
have opposite pairing. The second system is a Rashba
bilayer [38], e.g., the two interfacial 2DEGs (sz=±1) of
LaAlO3-SrTiO3-LaAlO3 sandwich. The β-term is the ki-
netic energy of each 2DEG, while the smaller α-term rep-
resents the Rashba spin-orbit coupling [47] that switches
sign on the two interfaces as they are exposed to opposite
local electric fields. m is a small gap at k = 0 because
of interlayer hybridization. When |µ| < |m| and ∆ 6= 0,
only the two outer helical bands are present at Fermi en-
ergy and they acquire opposite pairing, realizing a DIII
topological SC. The odd-parity pairing in (12) can be
engineered via a π-junction [15] or may be favored by
repulsive interactions [38]. In either case this Z2 topo-
logical SC must also be a topological mirror SC as we
have proved. Near kq = 0 the pairing ∼ szτx is opposite
for different surfaces while at kq = ∞ the gap is trivial,
indeed leading to γm(0) = 1 while γm(π) = 0.

Finally we consider models for topological mirror-plane
SCs. In the context of CuxBi2Se3, a 3D SC, it is found
that the DIII topological state breaks mirror symmetry
while the states respecting mirror symmetry are either
trivial or nodal [35]. The nodal states are indeed mirror
topological [36]; γm switches between 0 and 1 across the
nodes. These facts are very consistent with our predic-
tions that a SC with a mirror plane must be TR trivial
but can be mirror topological. Our model (10) also has a
mirror plane when δ cos kyτz is added. For a sufficiently
small δ, the spectrum is fully gapped and all results about
(10) still hold at both ky = 0 and π.

Discussion.— We have only illustrated the physics of
topological mirror superconductivity in simple lattices,
but our theory readily applies to any crystal structure.
A topological mirror SC and its Majorana multiplet are
robust if by average [49, 50] the disorder respects mirror
and TR symmetries. Besides a mirror fractional Joseph-
son effect, the MKPs lead to resonant Andreev reflection
producing a pronounced Zero bias conductance peak in
tunneling spectroscopy. Adding a Zeeman field propor-
tional to the mirror operator do not change the invari-
ants, as long as the reduced gap remains open. However,
the Andreev bound states would be lifted from but still
symmetric around zero energy. As a result, such a field
would reduce and split the peak. In sharp contrast, other

Zeeman fields destroy the peak without splitting it.

0D Majorana modes in a 1D topological SC network
give hope for fault-tolerant quantum computing [48].
Manipulating different Majorana modes without cou-
pling or dephasing them is a challenging but necessary
task, which may be solved by adding TR and mirror sym-
metries. The TR symmetry likely provides an Anderson’s
theorem to mitigate the role of disorder in bulk supercon-
ductivity; a mirror symmetry further allows the existence
of multiple Majorana modes and more importantly pro-
hibits any coupling among them. If two topological SCs,
with the same (opposite) sign(s) in their mirror Berry
phases, respect a common mirror symmetry, their num-
bers of MKPs at the linked end are added (subtracted)
for two left or two right ends and subtracted (added) for
one left and one right ends.

It is also fascinating to consider other crystalline sym-
metries. While inversion is always broken by a bound-
ary, a rotational symmetry can be respected. It turns
out that a rotational symmetry plays two different roles.
Different mirrors may be related by a rotational symme-
try and their mirror invariants are hence the same. A
rotational symmetry itself can give rise to topological su-
perconductivity classified by integer quantized rotational
Berry phase(s). For instance, with sin kx σz replaced by
sin kx σx and kxσy − kyσx replaced by kxσx + kyσy, our
models (9) and (12) respectively describe a 1D and a 2D
topological SC protected by their C2(x̂) symmetries. Fi-
nally we note that for a class D SC with a mirror plane
where there exists a mirror Chern number, the classifi-
cation is Z in 2D and Z×Z in 3D. Topological mirror
superconductivity will likely open up new horizons for
Majorana physics and even more topological crystalline
SCs await to be discovered.
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Note added.— After this work was finalized, two com-
plementary and independent studies [51, 52] appeared,
yet their aims and focuses are very different from ours.
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