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Fan Zhang,∗ C. L. Kane, and E. J. Mele
Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104, USA

We propose a feasible route to engineer one and two dimensional time reversal invariant (TRI)
topological superconductors (SC) via proximity effects between nodeless s± wave iron-based SC and
semiconductors with large Rashba spin-orbit interactions. At the boundary of a TRI topological
SC, there emerges a Kramers pair of Majorana edge (bound) states. For a Josephson π-junction we
predict a Majorana quartet that is protected by mirror symmetry and leads to a mirror fractional
Josephson effect. We analyze the evolution of Majorana pair in Zeeman fields, as the SC undergoes a
symmetry class change as well as topological phase transitions, providing an experimental signature
in tunneling spectroscopy. We briefly discuss the realization of this mechanism in candidate materials
and the possibility of using s and d wave SC and weak topological insulators.

Introduction.— Broken symmetry and topological or-
der are two fundamental themes of condensed matter
physics. The search for topological superconductors
(SC) [1–3] is fascinating, as gauge symmetries are spon-
taneously broken in the bulk and gapless Andreev bound
states (ABS) can be topologically protected at order pa-
rameter defects, hosting Majorana fermions. Majoranas
are immune to local noise by virtue of their nonlocal
topological nature and thus give hope for fault-tolerant
quantum computing [4]. The rise of topological super-
conductivity has been expedited by recent proposals [5–
10] that hybridize ordinary SC’s with helical materials,
with the help of magnetic perturbations. Using proxim-
ity effects, electrons in a single helical band at the Fermi
energy form conventional Cooper pairs, whose conden-
sation realizes a spinless chiral p wave SC in its weak
pairing regime, i.e., a topological SC with broken time
reversal symmetry (class D). Unique signatures, includ-
ing zero bias conductance peaks, anomalous Fraunhofer
patterns, and fractional Josephson effects, are starting to
be observed in these systems [11–15]. A completely dis-
tinct family (class DIII) of time reversal invariant (TRI)
topological SC’s was proposed based on a mathematical
classification of Bogoliubov-de Gennes (BdG) Hamiltoni-
ans [16–22]. CuxBi2Se3 [20] and Rashba bilayers [23, 24]
are possible candidates, however, it seems very challeng-
ing since exotic interactions are required and experimen-
tal observations remain controversial [25–32].

A more ambitious goal is to realize TRI topological SC
without exotic electron-electron interactions in absence of
Zeeman fields. Here we propose a feasible route to uti-
lize proximity effect devices which combine Rashba semi-
conductors (RS) and nodeless iron-based SC’s. Below its
transition temperature the SC provides the RS a s± wave
spin-singlet pairing potential that switches sign between
the Γ and M points [33–35]. TRI topological SC is re-
alized when the chemical potential is adjusted to make
the inner and outer Fermi surfaces feel pairing poten-
tials with opposite signs. At a boundary of the 2D (1D)
TRI topological SC, a Kramers pair of Majorana edge
(bound) states emerge as localized midgap states. For a
Josephson π-junction a Majorana quartet is protected by
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FIG. 1. (a) Sketch of the proximity devices proposed in the
text. A Majorana Kramers pair emerges at the boundary
when the TRI SC becomes topological. (b) Sketch of the
Josephson junction described in the text.

mirror symmetry, leading to a mirror fractional Joseph-
son effect. We analyze how the Majorana pair evolves
in Zeeman fields, as the SC undergoes a symmetry class
change and topological phase transitions, providing an
experimental signature in tunneling spectroscopy.

2D TRI topological SC.— We first introduce a minimal
model on a square lattice to characterize 2D TRI SC:

H = −t
∑

<ij>,σ

c†iσcjσ − iλR
∑
<ij>

c†iα(σαβ × d̂ij)zcjβ

+ ∆0

∑
i

(c†i↑c
†
i↓ + h.c.) + ∆1

∑
<ij>

(c†i↑c
†
j↓ + h.c.) .(1)

Here t is the nearest neighbor hopping and σ are the
Pauli matrices of electron spin. The second term arises
from the Rashba spin-orbit interactions. Note that d̂ij is
a unit vector pointing from site j to site i and we assume
λR > 0. ∆0 and ∆1, induced by the proximity effect,
lead to a combined s± wave pairing potential. It is more
convenient to write the BdG Hamiltonian:

HBdG
k = [−2t(cos kx + cos ky) + hRk − µ] τz + ∆k τx

hRk = 2λR(sin kx σy − sin ky σx)

∆k = ∆0 + 2∆1(cos kx + cos ky) , (2)

where µ is the chemical potential and τ are the Pauli
matrices in Nambu particle-hole notation. ∆k is a s±
wave singlet pairing potential that switches signs between
the zone center Γ (0, 0) and the zone corner M (π, π)
when 0 < |∆0| < 4∆1. As we show in Fig. 1(a) and note
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below, ∆k could be provided by a nodeless iron-based SC
on which the Rashba layer is deposited. HBdG

k has time
reversal (Θ = −iσyK) and particle-hole (Ξ = σyτyK)
symmetries. We obtain the energy dispersion

EBdG
k = ±

√[
2t(cos kx + cos ky) + µ± εRk

]2
+ ∆2

k ,(3)

where εRk = 2λR

√
sin2 kx + sin2 ky is the Rashba en-

ergy. ∆k has a closed nodal line, i.e., cos kx + cos ky =
−∆0/(2∆1), in the first Brillouin zone. At the nodal line,
EBdG

k = ±
(
µ− ε0 ± εRk

)
with ε0 = t∆0/∆1, and εRk has

the maxima εRmax = 2λR
√

2−∆2
0/(8∆2

1) and the minima

εRmin = 2λR
√
|∆0/∆1| −∆2

0/(4∆2
1).

In both 2D and 1D, the Z2 topological invariant [16–
19] of a TRI SC is determined by whether the pairing
potential has a negative sign on odd number of Fermi
surfaces each of which encloses a TRI momentum [18].
As shown in Fig. 2 and summarized in Table I [36], the
phase of the hybrid SC depends on the chemical potential
µ. For the case of εRmin ≤ |µ−ε0| ≤ εRmax, HBdG

k describes
a nodal SC. When |µ−ε0| > εRmax, the SC is fully gapped
but in the trivial (ν = 0) phase since ∆k has the same
sign on both Fermi circles. When |µ− ε0| < εRmin is satis-
fied, the pairing potential switches sign between the two
Fermi circles, and consequently the hybrid system real-
izes a TRI topological SC (ν = 1). The energy window
for tuning the system into the ν = 1 state has the size of
2εRmin with an optimized value 4λR at ∆0 = ±2∆1. For
the ν = 1 state helical Majorana edge states emerge at
the boundary, as shown in Fig. 2. This pair of Majoranas
cross at k = π(0) for sgn(∆0/∆1) = +(−), protected by
time reversal and particle-hole symmetries.

1D TRI topological SC.— By turning off all the ky
terms Eq. (2) models a 1D Rashba nanowire deposited
on a nodeless s± wave SC. When the two s± wave or-
der parameters satisfy |∆0| < 2∆1, the pairing potential
switches sign between the two TRI momenta 0 and π. In
1D, the closed nodal line of ∆k is shrunk to two nodes at
k = ± arccos(−∆0/2∆1). At the nodes, the Rashba en-
ergy is εRm = 2λR

√
1−∆2

0/(4∆2
1), and thus a proximity

induced 1D TRI nodal SC is identified for µ = ε0 ± εRm.
When |µ− ε0| < εRm, a positive pairing is induced for the
inner pair of Fermi points while a negative pairing for
the outer pair, realizing a 1D TRI topological SC. In the
case of |µ−ε0| > εRm, the hybrid system becomes a trivial

TABLE I. Summary of the Z2 classification of the hybrid TRI
SC in class DIII. ε0, εRm, εRmin, and εRmax are defined in the text.

Phase Two Dimension One Dimension

ν = 1 |µ− ε0| < εRmin |µ− ε0| < εRm

Nodal εRmin ≤ |µ− ε0| ≤ εRmax |µ− ε0| = εRm

ν = 0 |µ− ε0| > εRmax |µ− ε0| > εRm
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FIG. 2. Upper panels: the two Fermi surfaces (blue and
green) of the single-particle bands for the ν = 1 state; the
closed nodal line (red) of ∆k, separating two regions in which
∆k has opposite signs. Lower panel: BdG spectrum of a 2D
ribbon as a function of k for the ν = 1 state with µ = ε0.
The red and green lines indicate the helical Majorana edge
states. We choose parameter values: t = 10, λR = 5, and
|∆0| = ∆1 = 2. (a) ∆0 > 0 and (b) ∆0 < 0.

SC that is adiabatically connected to the vacuum state.

At each end of a 1D TRI topological SC, there emerges
a Kramers pair of Majorana bound states (MBS). With-
out loss of generality, in the rest of this paper we will
set ∆0 = 0 for the 1D case and thus |µ| < 2λR is the
criterion for the ν = 1 state, as shown in Fig. 3(a). The
cyan line denotes four degenerate MBS’s independent of
∆1. Further investigation of their wavefunctions shows
that these four MBS’s form two Kramers pairs localized
at the opposite ends of nanowire. This verifies our ana-
lytical results summarized in Table I.

Mirror Fractional Josephson effect.— Consider the lin-
ear Josephson junction in Fig. 1(b), in which a Rashba
nanowire is deposited on a larger s± wave SC ring, and
the phase difference φ = (2e/~)Φ across the junction
is controlled by the magnetic flux Φ through the ring.
Fig. 3(b) shows the spectrum of ABS’s as a function of
φ when the physical separation between the ends of SC
ring is small. The four-fold cyan line shows the appear-
ance of a pair of MBS’s at each end of the wire. The
red and green lines, both doubly degenerate, represent
two pairs of ABS’s in the junction. When φ 6= π, time
reversal symmetry is broken and a finite µ lifts the degen-
eracy. However, protected by particle-hole, time reversal,
and mirror (My = −iσy) symmetries, their crossing at
E = 0 and φ = π is a four-fold degeneracy of special
significance. This π-junction is in sharp contrast with
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FIG. 3. (a) BdG spectrum of the 1D TRI SC as a function
of µ. (b) Spectrum of ABS’s in the junction as a function
of φ. The cyan lines are four-fold degenerate, denoting two
Kramers pairs of MBS’s at opposite ends. The red and green
lines are doubly degenerate, denoting two pairs of ABS’s in
the junction. We choose parameter values: t = 10, λR = 5,
∆1 = 2, and ∆0 = 0. µ = 0 is used in (b).

its Z2 counterpart in the class without mirror symme-
try [9, 19, 37]. Splitting the Majorana quartet at φ = π
requires breaking mirror or time reversal symmetry.

To further understand this topological twist, we lin-
earize our model (2) near the Fermi energy:

Heff = (vkxσy − c) s τz − µ τz +HSC , (4)

HSC = ∆ s [cos
φ

2
τx + sgn(x) sin

φ

2
τy] , (5)

where s = ± denote the inner and outer bands with op-
posite spin helicities and c (0 < c < µ) lifts their degen-
eracy. We find the ABS dispersions εs(φ) = ∆ cos(φ/2).
Note that the perfect normal state transmission and the
independence on µ, c and s are artifacts of the simpli-
fied model. We can define Bogoliubov operators Γs±
that satisfy Γs ≡ Γs+ = Γ†s− because of the particle-
hole symmetry. The low-energy Hamiltonian is thus
H =

∑
s εs(φ)(Γ†sΓs − 1

2 ) = 2i
∑
s εs(φ)γsηs where γs =

(Γ†s + Γs)/2 and ηs = i(Γ†s − Γs)/2 are the Majorana op-
erators. The mirror symmetry allows one to label the
bands with the eigenvalues of σy. For each s, Γ†sΓs = 0, 1
distinguishes two states with different mirror eigenvalues
and coupling them requires a process that changes Γ†sΓs.
Due to the Cooper pairing, the total charge is not con-
served. However, the fermion parity Γ†sΓs mod 2 is con-
served, as the mirror symmetry does not allow scattering
between the two bands. This mirror fermion parity con-
servation forbids to mix the four ABS’s in the junction
and therefore protects their crossing at zero energy.
φ acts like a defect and parameterizes the mirror

fermion parity pump. Although Eq. (4) is invariant under
δΦ = h/2e, the global Hamiltonian is physically distinct.
When a flux h/2e is threaded through the SC ring, φ is
advanced by 2π, γs → γs while ηs → −ηs, and a unit
of fermion parity is transferred between the two bands
resolving the fermion parity anomaly for an individual
band. In response to the phase change, the populated

ABS’s carry supercurrents Is± = ±Is, whereas the states
in the continuum has negligible contributions. We ob-
tain Is = (e/~)∂εs/∂φ ∼ sin(φ/2), which is maximized
at φ = π in sharp contrast to the ν = 0 (conventional)
case. In the absence of mirror symmetry breaking, there
is no transition among Is±, signaling a mirror fractional
Josephson effect with 4π periodicity.

Evolution of Majorana pair in Zeeman field.— When
one helical band is removed from the Fermi energy, a
Rashba nanowire proximity coupled to a s wave SC is
a topological SC with broken time reversal symmetry,
supporting a single MBS at each end. Since only one
band is present at the Fermi energy this also occurs even
if the SC is s± wave. Realizing such a topological phase
requires µ and a Zeeman field Vzσz (or Vzσx) to satisfy
4∆2

1 +(|µ|−2t)2 < V 2
z < 4∆2

1 +(|µ|+2t)2, provided that
the hybrid SC remains fully gapped (µ2 6= 4λ2R + V 2

z ).
The latter condition is guaranteed for the TRI ν = 1
phase as it satisfies |µ| < 2λR. It is thus intriguing to
investigate how the Majorana pair evolves in the Zeeman
field, as the bulk SC undergoes a symmetry class change
and topological phase transitions. Fig. 4(a) shows the
evolution in the case of µ 6= 0. When Vz is turned on,
without gap closing, the topological SC in the TRI class
becomes a trivial SC in the class without time reversal
symmetry. Two topological phase transitions occur at
V 2
z = 4∆2

1 + (|µ| ± 2t)2 where the gap closes. The ν = 1
state in the new class is realized between the transitions.
At one end, as Vz is tuned up, one MBS disappears at the
first transition while the other persists in the ν = 1 state
and enters the bulk continuum at the second transition.
For the special case µ = 0, the two transitions merge into
one and the new ν = 1 state does not appear.

As implied by the zero energy black lines in Fig. 4(a),
it seems baffling that the Majorana pair is robust against1
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FIG. 1. Current and noise as functions of φ. The green curves
represent the ideal case for zero temperature and zero voltage
with v~/L = 0.05. The purple, orange, blue, and red curves
respectively represent the cases for v~/L = 0.5, 0.2, 0.1, and
0.05 with T = 0.005 and eV1 = eV2 = eV = 0.05.

FIG. 4. Evolution of a MBS pair in Zeeman fields. (a) In
a σz (σx) field; (b) in a σy field. The cyan dots (lines) have
two-fold (no) degeneracy, indicating the appearance of a MBS
pair (single MBS) at the end of SC. The black lines at zero en-
ergy are doubly degenerate. The red and green lines indicate
the Zeeman splitting of two zero energy states with opposite
fermion parity. We choose parameter values: µ = −5 in (a),
µ = 0 in (b), and others are the same as in Fig. 3.
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the Zeeman field before the first transition occurs. We
emphasize that these Majoranas are not topologically
protected because the bulk SC is trivial in the new class.
However, their robustness can be understood using the
effective model described by Eq. (4) with

HSC = ∆ s τx θ(a− |x|) + ∆̄ τx θ(|x| − a) , (6)

where x = ±a are the locations of the two ends of SC
and ∆̄→∞ reflects the infinity mass of vacuum. Eq. (6)
incorporates the correct boundary condition [38] of TRI
topological SC. Solving the boundary problem, we find
that a pair of MBS’s at one end forms two states with
σy = τy = ±1 while the other pair at the opposite end
forms two states with σy = −τy = ±1. Clearly, a σx or
σz Zeeman field only couples states with opposite σy fla-
vors at opposite ends, whose wavefunction overlap decays
exponentially on the SC length. Consequently, none of
the Majoranas can be passivated away from zero energy
until the first topological phase transition. However, as
shown in Fig. 4(b), a small σy field can Zeeman split the
two zero energy states with opposite fermion parity at
each end, revealing the topological triviality of bulk SC.
The σy field also closes the SC gap.

The evolution of a Majorana pair in a Zeeman field
provides a smoking gun for the identification of a TRI
topological SC in tunneling spectroscopy. In a single-
channel quantum point contact, the Majorana pair in-
duces resonant Andreev reflection producing a quantized
zero bias conductance peak [39–41] of 4e2/h. This peak
persists for small σx and σz fields, reduces to 2e2/h after
the first topological quantum phase transition, and dis-
appears at the second one. In contrast, a small σy field
not only Zeeman splits but also reduces the peak.

Discussions.— Unlike a dxy wave SC, where it is im-
possible to induce a full gap at the Fermi surface centered
at a TRI momentum, a s± or dx2−y2 wave SC allows the
pairing potentials on Fermi surfaces centered at (0, 0) and
(π, π) or at (0, π) and (π, 0) to have opposite signs. Thus
it is possible to build a 2D TRI topological SC by hy-
bridizing a weak topological insulator with two surface
states and a s± or dx2−y2 wave SC [36]. Although rota-
tional symmetry of RS makes a hybrid 2D dx2−y2 wave
SC nodal, it is possible to use them to engineer a 1D
TRI topological SC, as suggested by Wong and Law [42].
One might wonder whether it is possible to utilize a pure
s wave SC. We note that this seems implausible [36].

Our proposal is experimentally feasible, since the nec-
essary ingredients and required technologies are all well
established. It has been widely accepted that, at least
for iron pnictides, there are a large family of nodeless s±
wave SC’s [33–35], though their pairing mechanism is still
under lively debate. An iron-pnictide with closer electron
and hole Fermi surfaces is preferred. ∆0,1 can be adjusted
by doping or changing materials. Iron-pnictides consist
of square layers that are stacked in tetragonal structures
and it is better to choose RS with cubic or tetragonal

structures, e.g., Au, Ag, and Pb [43]. Small lattice in-
commensurability may blur and effectively broaden the
induced pair potential in RS, which may be helpful as
long as the hybrid SC remains nodeless.

Our proposal for a realization of TRI topological SC’s
in 1D and 2D constitutes six critical advances: (i) there
is no need for magnetic perturbations or exotic interac-
tions, simplifying the experimental setup; (ii) the SC gap
can reach more than 15 meV, raising the critical temper-
ature of topological SC; (iii) the time reversal symme-
try likely provides an Anderson’s theorem to mitigate
the role of bulk disorder, making the superconductivity
more robust; (iv) irrelevant bands are absent and higher
subbands play no role [44], allowing large tunability in
feasible materials; (v) the chemical potential is not nec-
essarily close to the band degeneracy point of RS, where
the electron density is low and the disorder effect is large;
and (vi) the Majoranas are stable to pair fluctuations, as
long as the fluctuations neither close the gap nor change
the pairing sign at any Fermi surface. Our work also pro-
vides a way to use the presence of Majorana fermions to
test the pairing symmetry of unconventional SC’s.
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Z. Jiang arXiv:1210.6054 (2012).

[30] N. Levy, T. Zhang, J. Ha, F. Sharifi, A. A. Talin, Y. Kuk,

and J. A. Stroscio, arXiv:1211.0267 (2012).
[31] B. J. Lawson, Y. S. Hor, and Lu Li, Phys. Rev. Lett.

109, 226406 (2012).
[32] H. Peng, D. De, B. Lv, F. Wei, and C. Chu,

arXiv:1301.1030 (2013).
[33] K. Ishida, Y. Nakai, and H. Hosono, J. Phys. Soc. Jpn.,

78, 062001 (2009).
[34] I. I. Mazin, Nature 464, 183 (2010).
[35] T. Das and A. V. Balatsky, J. Phys.: Condens. Matter

24, 182201 (2012).
[36] See the supplementary materials.
[37] L. Fu and C. L. Kane, Phys. Rev. B 79, 161408(R)

(2009).
[38] F. Zhang, C. L. Kane, and E. J. Mele, Phys. Rev. B 86,

081303(R) (2012).
[39] K. T. Law, P. A. Lee, and T. K. Ng, Phys. Rev. Lett.

103, 237001 (2009).
[40] M. Wimmer, A. R. Akhmerov, J. P. Dahlhaus, and C.

W. J. Beenakker, New J. Phys. 13, 053016 (2011).
[41] For a review see: C. W. J. Beenakker, arXiv:1112.1950

(2011).
[42] L. M. Wong and K. T. Law, Phys. Rev. B 86, 184516

(2012).
[43] For the 2D case, the thin film is best grown along (001)

direction to utilize the square symmetry. (111) thin films
with hexagonal symmetry may require a large λR. For
the 1D case, either growing direction works.

[44] The bulk bands [5] or the band removed from Fermi en-
ergy [7–10] plays negative roles in realizing a class D
topological SC experimentally. There are no such prob-
lems in our case. Furthermore, the topological criterion
in class DIII only cares about the sign of pairing poten-
tial at Fermi surfaces, implying that higher subbands not
present at Fermi energy play no role.


