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Aging in kinetics of three different phase transitions, viz., magnetic, binary solid and single com-
ponent fluid, have been studied via Monte Carlo and molecular dynamics simulations in three space
dimensions with the objective of identifying the effects of order-parameter conservation and hydro-
dynamics. We observe that the relevant autocorrelations exhibit power-law decay in ferromagnet
and binary solid but with different exponents. At early time fluid autocorrelation function nicely
follows that of binary solid, the order parameter being conserved for both of them, as opposed to a
ferromagnet. At late time the fluid data crosses over to an exponential decay which we identify as
a hydrodynamic effect and provide analytical justification for this behavior.
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Understanding properties related to aging [1] in out
of equilibrium systems is of fundamental as well as of
practical importance. Systems of interest are in abun-
dance [2–9], starting from biology to cosmology. In the
literature of nonequilibrium statistical mechanics, even
though the quantities involving single time are reason-
ably well understood [10], those involving multiple time
remained difficult. Aging phenomena is related to the
latter where one expects slower relaxation of older sys-
tems, i.e., a two-time correlation function, will be defined
shortly, will not be invariant with respect to time dis-
placement, in nonequilibrium situation. Apart from this
obvious qualitative fact, understanding of this important
phenomena is very poor even for simplest of the systems.

In this letter, we present results from the studies of
aging kinetics in nonequilibrium systems following three
distinctly different phase transitions with the objective
to understand the effects of order-parameter conservation
and hydrodynamics on this phenomena. For this purpose
we have studied the two-time or autocorrelation function
[1], C(t, tw), defined as

C(t, tw) = 〈φ(~r, t)φ(~r, tw)〉 − 〈φ(~r, t)〉〈φ(~r, tw)〉, (1)

where φ(~r, t) is the relevant space (~r) and time (t) depen-
dent order parameter. In Eq. (1), t and tw are referred to
as the observation and waiting times, respectively – the
latter essentially is the age of the system. Note that the
averaging in Eq. (1) involves sampling over different sys-
tems as well as integration over all points in a particular
system. Unless otherwise mentioned, all results will be
presented after normalizing C(t, tw) to unity at t = tw.

Fisher and Huse (FH) [11], from the study of spin
glass systems, predicted a power-law decay of C(t, tw), in
d space dimensions, as

C(t, tw) ∼

(

ℓ

ℓw

)

−λ

;
d

2
≤ λ ≤ d, (2)

where ℓ and ℓw are characteristic lengths of a system at
time t and tw, respectively. The bounds in Eq. (2) have
the following physical basis [12]. Consider a domain of
size ℓ at time t. Within this region of length ℓ, at an
early time relatively random configurations of spins ex-
isted with magnetization per unit volume ∼ ℓ−d/2, which

changes to unity at time t. This provides the lower bound
d/2. The upper bound can be justified by being on the
conservative side that the bias that provides magnetiza-
tion ℓ−d/2 may not go away completely at late time. How-
ever, not much further information have been obtained
either on the value of the exponent or on the general va-
lidity of a power-law decay, particularly for systems with
conserved order-parameter dynamics. As we will see this
scaling form need not be valid always.

In this work, from the comparative studies of aging dy-
namics in 3− d systems undergoing ferromagnetic order-
ing, phase separation in a solid binary mixture and that
in a vapor-liquid system, we obtain significant general
understanding. Note that having been quenched from a
homogeneous state to a temperature (T ) below the crit-
ical one (Tc), these systems move towards the new equi-
librium state via formation and growth of domains as [10]

ℓ(t) ∼ tα. (3)

In case of a ferromagnet, where one has nonconserved
order-parameter, the exponent α has a value [10] 1/2;
for phase separating binary solid, for which the order-
parameter is a conserved quantity [10, 13, 14], α = 1/3.
In fluids, however, the entire growth process cannot be
described by a single exponent. This complexity is due to
the influence of hydrodynamics [15–18]. In this case the
early time growth is consistent with the binary solid due
to diffusive transport. At late time, the exponent crosses
over to α = 1, referred to as the viscous hydrodynamic
regime and further to the inertial hydrodynamic regime
with α = 2/3. It is crucial to understand the effects of α
and thus the growth mechanism, on the decay of C(t, tw).

To address these issues, we have considered two differ-
ent models. For the growth dynamics in ferromagnet and
solid binary mixture, we have studied the nearest neigh-
bor Ising model H = −J

∑

<ij> SiSj ; Si = ±1; J > 0,
prototype for a variety of phase transitions. For a bi-
nary (A+B) mixture spin value Si = 1 corresponds to
an A-particle and −1 to a B-particle. The kinetics in
this model was studied via Monte Carlo (MC) simula-
tions [19]. In the nonconserved case we have imple-
mented the Glauber spin-flip kinetics [19] where in a trial
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MC move the sign of a randomly chosen spin was al-
tered and the move was accepted or rejected according
to standard Metropolis criterion. In case of conserved
kinetics, we have used the Kawasaki exchange mecha-
nism [19] where, in a trial move, positions of a ran-
domly chosen nearest neighbor pair of spins were inter-
changed. Note that various single time quantities in Ising
model both with Glauber and Kawasaki kinetics are ex-
tensively studied [10]. On the other hand, for the vapor-
liquid transition, we have carried out molecular dynam-
ics (MD) simulations [20] on a model where particles of
equal mass (m) interact with each other via [17] u(r =
|~ri − ~rj |) = U(r) − U(rc) − (r − rc)(dU/dr)r=rc , where
U(r) = 4ǫ

[

(σ/r)12 − (σ/r)6
]

is the standard Lennard-
Jones (LJ) potential, with ǫ and σ being respectively the
interaction strength and particle diameter. Here the cut-
off distance rc(= 2.5σ) was introduced for faster compu-
tation.

FIG. 1. Snapshots during the evolutions of (a) a ferromagnet,
(b) a solid binary mixture and (c) a vapor-liquid system, at
indicated times and temperatures. The left column shows
the original 3 − d snapshots while the right column shows
corresponding 2 − d slices. The linear dimension L of the
systems are 100, 100 and 96, respectively. In all the snapshots
only up spins or A-particles are shown.

As opposed to the MC simulation of Ising model where
the spins or particles sit only on sites of a regular lattice
system (of lattice constant a), in the MD simulations par-
ticles can change their positions continuously. To control
the temperature in MD simulations, we have used the
Nosé-Hoover thermostat [20] that preserves hydrodynam-
ics well. For the Ising model, time was measured in units
of the Monte Carlo Steps (MCS) with one MCS consist-
ing of L3 trial moves, L being the linear dimension of
the system. For the MD runs, we have the LJ time unit
t0 = (mσ2/ǫ)1/2. In the rest of the paper, we set m, σ, ǫ,
J , a and the Boltzmann constant kB to unity. Then the
LJ unit t0 becomes unity as well.

In addition to C(t, tw), ℓ(t), that will often be used,
was calculated from the first moment of the domain size
distribution function P (ℓd, t) as ℓ(t) =

∫

dℓdℓdP (ℓd, t),
where P (ℓd, t) was obtained by calculating ℓd as the dis-
tance between all consecutive domain boundaries along
all cartesian axes. All our results are obtained with pe-
riodic boundary conditions. For the Ising model we have
chosen a simple cubic lattice. For the analysis of LJ sys-
tem results, the continuous original configurations were
mapped to a simple cubic lattice [17]. In this procedure,
every particle was moved to the nearest lattice site, fol-
lowing which if a site is occupied by a particle it was
assigned a spin value +1, otherwise −1. Note that in
Eq. (1) φ corresponds to these spin values. Quantitative
results are presented after averaging over multiple initial
configurations. Before presenting the results, we mention
that for the Ising model [19] Tc = 4.51 and for the LJ
system it is [21] ≃ 0.9. In all the cases, quenching was
done along the critical composition or density (ρ). For
Ising model, of course, this corresponds to a 50 : 50 com-
position of up and down spins, while for the LJ model we
have [17, 21] ρc ≃ 0.3.

In Fig. 1, we show snapshots from the evolutions of all
three systems, starting from homogeneous initial configu-
rations. The temperatures of quench in each of the cases
are mentioned on the figure. The frames on the left are
original 3−d configurations. For better judgement of the
pattern, on the right hand side frames we show 2−d slices
of the systems. It appears that there is significant differ-
ence in morphology for the conserved and nonconserved
dynamics [10]. Also, if the dynamics is conserved, effect
of hydrodynamics does not, at least, bring visibly differ-
ent features in the pattern as is clear from the snapshots
from binary solid and vapor-liquid systems.

FIG. 2. Plots of average domain size, ℓ(t), vs time, for various
coarsening systems. The continuous lines represent expected
functional behaviors. The units of time for various systems
are indicated on the figure.

The growth dynamics is compared, for all the systems,
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in Fig. 2 where we plot ℓ(t) as a function of t. The contin-
uous lines in this figure are fits to the expected theoretical
exponents. For the Ising model, it is clearly seen that the
data are consistent with exponents α = 1/3 and 1/2 for
the conserved and nonconserved dynamics respectively.
For the LJ model, however, after a brief period of slow
growth, there is a crossover to a regime where the sim-
ulation data are nicely consistent with a linear behavior
corresponding to viscous hydrodynamic growth [17]. We
do not aim for a further crossover to the inertial hydro-
dynamic regime due to lack of computational resources.
Next we move to the central objective of the paper.

In Fig. 3 we show the plots of C(t, tw) vs ℓ/ℓw for all
the systems. A double-log scale is used and the values of
tw in each of the cases are mentioned on the figure. It
is seen that the data for the solid binary mixture is con-
sistent with a power-law decay starting from very small
value of the abscissa variable till the end of the available
simulation results. The continuous line there has an ex-
ponent λ = 2.2 with which this set of data are nicely
consistent. The results for ferromagnet or vapor-liquid
system does not show linear look over the whole range.
However, the fluid data are consistent with the solid mix-
ture result at the beginning. This is due to the fact that
hydrodynamics becomes important only at large length
scales as already seen in Fig. 2. Around the value of
ℓ(t) from where we have seen a linear behavior for the LJ
system in Fig. 2, we observe a deviation from the power-
law in this figure. One can also ask, if the continuous
curvature of the ferromagnetic data is also indicative of a
non-power-law decay? Before moving on to answer these
questions, in the inset of Fig. 3 we show C(t, tw) vs t/tw
for the binary solid only. Again the data look very lin-
ear, after a brief initial period, on a double log scale and
are consistent with a power-law exponent ≃ −0.7. This
indirectly confirms that for diffusive kinetics with con-
served order parameter α is 1/3 with which, of course,
early time fluid results are consistent. The value λ = 2.2
is, of course, consistent with the bounds predicted by
FH [11]. However, this is in disagreement with similar
studies [22] via Cahn Hilliard (CH) equation [10]. We
have recently checked that the disagreement of our re-
sults with that from CH equation lies in the mean field
nature of the latter, thus lacking fluctuation. A study of
the CH equation with appropriately added thermal noise
provides consistency with our MC simulation [23]. There
also exist [24, 25] MC simulations of Ising model with con-
served dynamics but with accelerated algorithms which,
however, failed to obtain any scaling behavior in the au-
tocorrelation functions. This failure can be attributed to
the algorithms, e.g., one of them [24] suppresses diffu-
sion along interface which is crucial in a phase separation
dynamics. Even though the value of λ, that we quote
for d = 3 is consistent with FH bounds, note that more
recent studies of the conserved dynamics in d = 2 also
provides this value. Thus, the scaling form and bounds
predicted from spin-glass systems need not be valid for
general phase ordering systems. This claim will be sub-
stantiated by further analysis of the fluid data.

FIG. 3. Log-log plots of C(t, tw) vs ℓ/ℓw for all the three
systems. The solid line corresponds to a power-law decay with
an exponent λ = 2.2. The ordinate of the binary mixture data
was multiplied by a number to obtain overlap with the fluid
data at appropriate region. Inset shows C(t, tw) vs t/tw for
the solid mixture. There the dashed line has a power-law
exponent −0.7.

Next, in the main frame of Fig. 4 we show log-linear
plots of C(t, tw) vs ℓ/ℓw for the vapor-liquid transition.
Note here that we have chosen a value of tw such that
the system is in the hydrodynamic regime. The minimum
value of tw needed for this can be read out from Fig. 2.
This data clearly looks linear on this plot which confirms
exponential decay of the autocorrelation function. The
ferromagnet data, presented in the upper inset of Fig. 4,
however, is inconsistent with it. Note here that in all
the cases we have experimented with various values of
tw for general understanding of scaling with respect to
tw or ℓw and for the sake of brevity presented only the
representative ones.

In view of the other expectation that the ferro-
magnetic data follow a power-law behavior with time
or length dependent correction, in the lower inset of
Fig. 4 we present the instantaneous exponent [26] λi =
−d lnC(t, tw)/d ln ℓ, as a function of 1/ℓ. It appears that
λi has a linear dependence on 1/ℓ, for a significant period
of time. The minor deviation at late time, we confirmed,
is a finite-size effect. If we neglect the part affected by
finite-size effects, the data converge to a value ≃ 1.7,
predicted by theoretical calculations of Liu and Mazenko
[12]. Thus there is no universality involving conserved
and nonconserved dynamics, even though in both cases
C(t, tw) follow power-law decay.

Finally, we come to the understanding of the exponen-
tial decay, that was also recently observed in liquid-liquid
transition [27], for the vapor-liquid transition in the hy-
drodynamic regime. To accomplish that we start with
the order-parameter update equation of model H [10]

∂φ

∂t
+ ~v.∇φ = D∇2µ, (4)
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FIG. 4. Log-linear plot of C(t, tw) vs ℓ/ℓw for the vapor-
liquid system. The upper inset shows the corresponding plot
for a ferromagnet. The lower inset shows the instantaneous
exponent λi for the ferromagnetic system, as a function of 1/ℓ.
The solid line with an arrow is a guide to the eye.

where ~v is the advection field, D is a diffusion constant
and µ is the chemical potential. With the understanding
that in the fast hydrodynamic regime, contribution from
diffusion is negligible, we neglect the term on the right
hand side. From the definition of the autocorrelation
function in Eq. (1), it is clear that our task is to show that
the order-parameter changes exponentially fast. Here we
make an assumption that this exponential decay is due
to fast interfacial motion. Noting that for the viscous hy-
drodynamic growth, v(= ℓ/t) is constant (C) and in the
interfacial region ∇φ → 2φ/w, w being the interfacial
width, we obtain dφ/dt = −Kφ, where K(= 2C/w) is a
constant. This provides φ ∼ exp (−2ℓ/w).

In conclusion, we have presented results for aging dur-
ing the nonequilibrium evolutions in various systems –
ferromagnet, solid binary mixture and vapor-liquid sys-
tem – following quench from high temperatures below
the critical ones. The two-time correlation function [1]
C(t, tw) has been used as a probe for this study. The Ising
model with conserved and nonconserved order-parameter
dynamics were used to study the binary solid and ferro-
magnetic systems, respectively, while an LJ model [17]
was used for the study of fluid.

It is observed that in absence of hydrodynamics, in all
the cases the autocorrelation decays in a power-law fash-
ion. The exponent for the conserved order-parameter dy-
namics deviates significantly from the nonconserved one.
Interestingly, for the nonconserved case, there is signifi-
cant curvature dependent correction to the exponent. At
late time, in fluid, there is a crossover from power-law to
an exponential behavior which we understood via analyt-
ical argument.
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