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The effect of small deviations from a Maxwellian equilibrium on turbulent momentum transport
in tokamak plasmas is considered. These non-Maxwellian features, arising from diamagnetic ef-
fects, introduce a strong dependence of the radial flux of co-current toroidal angular momentum on
collisionality: As the plasma goes from nearly collisionless to weakly collisional, the flux reverses
direction from radially inward to outward. This indicates a collisionality-dependent transition from
peaked to hollow rotation profiles, consistent with experimental observations of intrinsic rotation.

Introduction. Observational evidence from magnetic
confinement fusion experiments indicates that axisym-
metric toroidal plasmas (tokamaks) that are initially sta-
tionary develop differential toroidal rotation even in the
absence of external momentum sources [1–5]. This ‘in-
trinsic’ rotation can depend sensitively on plasma density
and current, with relatively small variations reversing the
rotation direction from co- to counter-current [3, 6–9].
Conservation of angular momentum dictates that the in-
trinsic rotation is determined by momentum redistribu-
tion within the plasma. Since turbulence is the dominant
transport mechanism in fusion plasmas [10], one must un-
derstand turbulent momentum transport to understand
intrinsic rotation.

For the up-down symmetric magnetic equilibria used
in most experiments, the turbulent momentum transport
for a non-rotating plasma can be shown to be identi-
cally zero [11–13] unless one retains formally small ef-
fects that are usually neglected. A self-consistent, first-
principles theory has been formulated that includes these
effects [14, 15]. Of these effects, only radial variation of
plasma profile gradients [16–19] and slow variation of tur-
bulence fluctuations along the mean magnetic field [20]
have been studied, and these studies have not led to a
theory that explains the key dependences of intrinsic ro-
tation in the core of tokamaks.

In this Letter we consider the novel effect of small
deviations from an equilibrium Maxwellian distribution
of particle velocities on turbulent momentum transport.
These deviations arise naturally due to diamagnetic ef-
fects in plasmas with curved magnetic fields and den-
sity and temperature gradients [21]. They vary strongly
with quantities such as collisionality, plasma current, and
the equilibrium density and temperature gradients in the
plasma. We show using direct numerical simulations that
these non-Maxwellian features, though small, introduce
significant new dependences to the turbulent momen-
tum transport. We discuss the physical origins of the
dependences and possible implications for tokamak ex-
periments.

Momentum transport model. Tokamak plasma dy-
namics typically consist of low amplitude, small scale
turbulent fluctuations on top of a slowly evolving macro-
scopic equilibrium. It is thus natural to employ a mean
field theory in which the particle distribution function,
f , is decomposed into equilibrium, F , and fluctuating,
δf , components. The fluctuations are low frequency, ω,
relative to the ion Larmor frequency, Ω, and anisotropic
with respect to the equilibrium magnetic field, with char-
acteristic scales of the system size, L, along the field and
the ion Larmor radius, ρ, across the field. Expanding
f = f0 + f1 + ..., employing the smallness parameter
ρ∗

.
= ρ/L ∼ ω/Ω ∼ δf/F ∼ fj+1/fj � 1, and averag-

ing over the fast Larmor motion and over the fluctuation
space-time scales, one obtains a coupled set of multiscale
gyrokinetic equations for the fluctuation and equilibrium
dynamics [22–26].

Typically only the lowest order system of equations for
δf is considered. However, these equations have been
shown to possess a symmetry that prohibits momen-
tum transport in a non-rotating plasma [11–13]. Con-
sequently, we include in our analysis higher order effects
arising from corrections to the lowest order (Maxwellian)
equilibrium [14, 15]. We limit our analysis to these
non-Maxwellian corrections because they are known to
depend sensitively on plasma collisionality and current,
which are key parameters controlling intrinsic rotation
in experiments [3, 6–9]. We further simplify the anal-
ysis by considering only electrostatic fluctuations and
by performing the subsidiary expansions ρ∗ � ν∗ � 1
and ρ∗ � Bθ/B � 1, where B is the magnitude of the
equilibrium magnetic field, Bθ is the magnitude of the
poloidal component, ν∗

.
= νiiqR/vti, νii is the ion-ion

collision frequency, vti =
√

2Ti/mi is the ion thermal
speed, Ti is the equilibrium ion temperature, mi is the
ion mass, q is a measure of the pitch of the magnetic field
lines called the safety factor, and R is the major radius
of the torus. These are good expansion parameters in
typical fusion plasmas.

Our analysis is done in the frame rotating
toroidally with the E × B rotation frequency
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ωζ,E = −(c/RBθ)(∂Φ0/∂r), with c the speed of
light, Φ0 the lowest order equilibrium electrostatic
potential, and r a radial coordinate labeling surfaces
of constant magnetic flux. Using (R, ε, µ) variables,
with R the position of the center of a particle’s Lar-
mor motion, ε = mv2/2 the particle’s kinetic energy,
µ = mv2

⊥/2B the particle’s magnetic moment, v the
particle’s speed in the rotating frame, and ⊥ indicating
the component perpendicular to the magnetic field, the
resulting equation for the fluctuation dynamics is

Dgs
Dt

+
(
v‖ · ∇‖ + vDs · ∇⊥

)(
gs − Zse〈ϕ〉

∂F̂s
∂ε

)

+ 〈δvE〉 ·
(
∇⊥gs +∇F̂s +

msv‖

Ts

RBζ
B

FMs∇ωζ,E
)

= Zsev‖ · ∇Φ1
∂gs
∂ε

+ 〈Cs〉,

(1)

where g =
〈
δf1 + δf2

〉
, v is particle velocity, the sub-

script ‖ denotes the component along the equilibrium
magnetic field, Ze is particle charge, ϕ = δφ1 + δφ2

is the fluctuating electrostatic potential, Φ̂ = Φ0 + Φ1

is the equilibrium electrostatic potential, F̂ = F0 + F1,
D/Dt = ∂/∂t + vE · ∇⊥, 〈.〉 is an average over Lar-
mor angle at fixed R, vDs = vMs + vCs, with vCs
the drift velocity due to the Coriolis effect and vMs the
drifty velocity due to curvature and inhomogeneity in the
equilibrium magnetic field, δvE = (c/B)b̂ × ∇⊥ϕ and
vE = (c/B)b̂ × ∇Φ̂ are E × B drift velocities, b̂ is the
unit vector along the magnetic field, Bζ is the toroidal
component of the magnetic field, the subscript s denotes
species, and Cs describes the effect of Coulomb collisions
on species s.

Tokamak plasmas are sufficiently collisional that the
distribution of particle velocities is close to Maxwellian;
i.e., f0 = F0 = FM , with FM a Maxwellian. Equilibrium
deviations from FM are determined by the drift kinetic
equation [21],

v‖ · ∇H1s + vMs · ∇FMs = Cs[H1s], (2)

where H1 = F1 + ZeΦ1FM/T . Finally, the electrostatic
potentials are obtained and the system closed by enforc-
ing quasineutrality:∑

s

Zs

∫
d3v

(
gs +

Zse

Ts
(〈ϕ〉 − ϕ)FMs

)
= 0, (3)

∑
s

Zs

∫
d3v

(
H1s −

Zse

Ts
Φ1FMs

)
= 0. (4)

With gs and ϕ determined by Eqs. (1)-(4), the tur-
bulent radial fluxes of energy, Q, and toroidal angular
momentum, Π, are given by

Qs = 〈εsδfsδvE · ∇r〉Λ , (5)

Π =
∑
s

〈
msR

2δfs (v′ · ∇ζ) δvE · ∇r
〉

Λ
, (6)

where δf = g+Ze(〈ϕ〉−ϕ)FM/T , ζ is the toroidal angle,
v′ = v + R2ωζ,E∇ζ is the particle velocity in the non-
rotating frame, and 〈a〉Λ =

∫
dt
∫
d3r

∫
d3v a /

∫
dt
∫
d3r

is an integral over all velocity space, over the volume
between two surfaces of constant r separated by a dis-
tance w (ρ � w � L), and over a time interval ∆t
(R0/vti � ∆t� ρ−2

∗ R0/vti). This combined phase space
and time average is assumed to encompass several tur-
bulence correlation lengths and times.

Results and analysis. We obtain the correction, F1,
to the equilibrium Maxwellian and the corresponding
electrostatic potential, Φ1, by solving Eqs. (2) and (4)
using the drift kinetic code NEO [27]. These quanti-
ties are then input to the δf gyrokinetic code GS2 [28],
which we have modified to solve Eqs. (1) and (3) in
the presence of F1 and Φ1. To calculate the ‘intrinsic’
momentum flux that is present even for a non-rotating
plasma, we set the total toroidal angular momentum in a
constant-flux surface, which consists of diamagnetic and
E ×B contributions, to zero:

∑
s

〈
(msR

2v′ · ∇ζ)fs
〉

Λ
=∑

smsns
〈
R2
〉

Λ
(ωζ,E + ωζ,d) = 0, with ωζ,d =∑

s

〈
msR

2(v′ · ∇ζ)F1s

〉
Λ
/
∑
smsns

〈
R2
〉

Λ
the diamag-

netic contribution to the toroidal rotation frequency and
n the number density. The non-zero E × B rotation
needed to cancel the diamagnetic rotation breaks the
symmetry of the lowest order gyrokinetic equation and
thus contributes to momentum transport, as do the non-
Maxwellian equilibrium corrections we have included.

We consider a simple magnetic equilibrium with con-
centric circular flux surfaces known as the Cyclone Base
Case [29], which has been benchmarked extensively in
the fusion community. The equilibrium is fully specified
by the Miller model [30], with q = 1.4, ŝ

.
= ∂ ln q/∂ ln r =

0.8, ε
.
= r/R0 = 0.18, R0/Ln = 2.2, and R0/LT = 6.9,

where r is the minor radius at the constant-flux surface
of interest, R0 is the major radius evaluated at r = 0,
and Ln and LT are the density and temperature gradi-
ent scale lengths for both ions and electrons. In order to
obtain the gradient of F1 appearing in Eq. (1), we must
additionally specify the radial dependence of Ln and LT ,
which we take to be constant in r (∂LT /∂r = ∂Ln/∂r =
0) for our base case.

With these base case parameters specified, we conduct
a series of simulations with kinetic electrons and deu-
terium ions, varying ν∗ and κ

.
= R2

0∂
2 lnT/∂r2 about the

baseline value of ν∗ = 0.003, κ = 0. Our GS2 simula-
tions use 32 grid points in the coordinate parallel to the
magnetic field (the poloidal angle), 12 grid points in ε,
37 grid points in λ = µ/ε, and 128 and 22 Fourier modes
in the radial and binormal coordinates, respectively. The
box size in both the radial and binormal coordinates is
approximately 125ρi.

The resulting Π/Qi values as a function of ν∗ are
shown in Fig. 1. We normalize Π by Qi, which is al-
ways positive, to remove any dependence of overall tur-
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TABLE I: Collisionality dependence of ωζ,d

ν∗ 0.003 0.030 0.059 0.089 0.148 0.208 0.297

R0ωζ,d
vti

0.091 0.114 0.127 0.137 0.153 0.165 0.180

R2
0

vti

∂ωζ,d
∂r

-0.447 -0.577 -0.651 -0.701 -0.776 -0.829 -0.891
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FIG. 1: Ratio of radial fluxes of ion toroidal angular mo-
mentum, Π, and energy, Qi, vs. normalized ion-ion collision
frequency, ν∗.

bulence amplitude on collisionality. Note that F1, and
thus ωζ,E = −ωζ,d, varies with collisionality, as indicated
in Table I. For nearly collisionless plasmas, Π/Qi is neg-
ative, indicating a radially inward flux of co-current an-
gular momentum that would contribute to a centrally
peaked rotation profile. The ratio Π/Qi increases with
ν∗, passing through zero and becoming positive when
ν∗ ∼ ε3/2. For ν∗ & ε3/2, the radially outward flux of co-
current angular momentum would contribute to a hollow
rotation profile.

In Fig. 2, we show results from a series of simulations in
which we independently set the E×B rotation (including
its derivative) and the diamagnetic effects, represented
by F1, to zero. These are given by the blue and red
curves, respectively. We see that the E × B rotation
causes an inward momentum flux, with Π/Qi increasing
in magnitude with ν∗. The non-Maxwellian correction
F1 gives a Π/Qi that goes from slightly negative to large
and positive as ν∗ is increased. A partial cancellation
between these effects gives the actual Π/Qi.

To explore in more detail the origin of the sign reversal
of Π/Qi, it is convenient to express the ion energy flux in
the diffusive form Qi = −niχi∂Ti/∂r, and to decompose
the momentum flux as

Π = −mnR2
0

(
∂ωζ,d
∂r

χφ,d +
∂ωζ,E
∂r

χφ,E

)
−mnR2

0 (ωζ,dPd + ωζ,EPE) + Πother,

(7)
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FIG. 2: Ratio of radial fluxes of ion toroidal angular mo-
mentum, Π, and energy, Qi, vs. normalized ion-ion collision
frequency, ν∗ for: the base simulations (black), simulations
with no E × B rotation to balance the diamagnetic rotation
(blue), simulations with no correction, F1, to the Maxwellian
equilbrium (red), and simulations with Πother = 0 (green).

where χφ,d and Pd are diffusion and ‘pinch’ coefficients,
respectively, for the diamagnetic rotation, and χφ,E and
PE play the same roles for the E × B rotation. Eq. (8)
can be viewed as a Taylor expansion of Π for small val-
ues of the rotation and rotation shear. The quantity
Πother accounts for all other sources of Π that arise due
to F1(ωζ,d(r) = ωζ,E(r) = 0); e.g., the equilibrium paral-
lel heat flow and other higher order velocity moments
of F1 will contribute to Πother. Using the fact that
ωζ,E = −ωζ,d for a non-rotating plasma, we have

Π = −mnR2
0

(
∂ωζ,d
∂r

χφ,eff + ωζ,dPeff

)
+ Πother, (8)

where χφ,eff = χφ,d − χφ,E and Peff = Pd − PE .
Changing ν∗ can alter Π/Qi in multiple ways. First,

the effective turbulent pinch and diffusion coefficients,
Peff/χi and χφ,eff/χi, can be modified either directly by
collisions or indirectly by the ν∗-dependent rotation and
rotation gradient. By independently varying ν∗, ωζ,E ,
and ∂ωζ,E/∂r in GS2 turbulence simulations with fixed
F1 and Φ1, we found that such modifications of the
pinch and diffusion coefficients were minor. Further-
more, the turbulence type, characterized by the dom-
inant linear instability mechanism, remained the same
(ion-temperature-gradient driven) for all simulations.

With χφ,eff/χi and Peff/χi approximately independent
of ν∗, we see from Eq. (8) that the ν∗ dependence of
(Π − Πother)/Qi comes entirely from the change of ωζ,d
and ∂ωζ,d/∂r with ν∗, given in Table I. In order to cal-
culate (Π − Πother)/Qi, we ran a series of simulations
in which we used a modified F1 that was constrained to
produce pure rotation so that Πother = 0. The results
are shown as the green curve in Fig. 2. We see that
(Π−Πother)/Qi is always positive and increases approx-
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TABLE II: Temperature profile dependence of ωζ,d

−L2
T

∂2 lnT

∂r2
-1 0 1 2 4

R2
0

vti

∂ωζ,d
∂r

-1.116 -0.447 -0.105 0.223 0.835

imately linearly with ∂ωζ,d/∂r, as diffusion was found to
dominate over pinch in these cases. This indicates that
equal and opposite diamagnetic and E ×B rotations do
not lead to a complete cancellation of momentum trans-
port [31]. The increase in (Π − Πother)/Qi with ν∗ ac-
counts for just over half of the total increase in Π/Qi
over the range of ν∗ we have considered. The rest of the
increase, as well as the negative offset needed to give the
sign reversal in Π/Qi must come from Πother/Qi.

To see how these results may be modified for dif-
ferent plasma profiles, we also conducted a series of
simulations in which we fixed ν∗ = 0.003 and varied
κ = R2

0∂
2 lnT/∂r2. Since the calculation of F1 in NEO

depends on R0/LT , varying κ affects ∂F1/∂r but not F1

itself. Consequently, ∂ωζ,d/∂r varies with κ (see Table II)
while ωζ,d itself remains fixed. The change in Π/Qi with
κ is shown in Fig. 3. As was the case in the ν∗ study,
the E × B and F1 contributions to Π/Qi partially can-
cel, though in this case each contribution independently
changes sign with κ. The net result is a relatively weak
variation of Π/Qi with no sign reversal.

Discussion. The sign reversal of Π/Qi shown in Fig. 1
suggests a transition from peaked to hollow rotation pro-
files when ν∗ ∼ ε3/2. This is consistent with experimental
results, which show such transitions at similar ν∗ values
when density (proportional to ν∗) is increased or current
(inversely proportional to ν∗) is decreased [3, 6, 9, 32].
Furthermore, our observation that the normalized tur-
bulence diffusion and pinch coefficients vary only min-
imally during the transition agree with recent experi-
mental observations showing that the fundamental tur-
bulence characteristics are unaltered as the rotation re-
verses direction [9].

From Fig. 2 and the analysis following Eq. (8), it is
evident that a combination of effects leads to the sign re-
versal of Π/Qi. However, the sign reversal fundamentally
originates from the ν∗ dependence of F1, which has been
extensively studied and is the main concern of ‘neoclas-
sical’ theory (see, e.g., [21, 33]). For ν∗ � ε3/2, known
as the ‘banana’ regime, all particle orbits are collision-
less. However, for ε3/2 � ν∗ � 1, known as the ‘plateau’
regime, low energy particles that are trapped in the equi-
librium magnetic well become collisional. For a plasma
perfectly in the banana or plateau regimes, one can show
that F1, and thus our Π/Qi, becomes independent of
ν∗ [21, 33]. It is only when transitioning between these
regimes that Π/Qi varies with ν∗. So, while different
profiles of quantities such as density, temperature, and
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FIG. 3: Ratio of radial fluxes of ion toroidal angular mo-
mentum, Πi, and energy, Qi, vs. normalized second deriva-
tive of the logarithmic ion temperature for: the base simu-
lations (black) and for simulations with no E × B flow to
balance the diamagnetic flow (red) and no correction, F1, to
the Maxwellian equilibrium (blue).

current may alter or eliminate the transitions with ν∗
discussed above, transitions can only occur for ν∗ ∼ ε3/2.

During the transition between collisionality regimes,
the equilibrium poloidal flow obtained from neoclassical
theory reverses direction. If the diamagnetic effects dis-
cussed here are responsible for the reversal of the toroidal
rotation, an experimental signature would thus be a cor-
relation between the reversal of the toroidal and poloidal
flows [34].

Finally, we reiterate that in our analysis we retained
small terms (namely the diamagnetic effects that give
rise to departures from a Maxwellian equilibrium distri-
bution) in the multiscale gyrokinetic expansion, while we
neglected other terms (radial profile variation, certain ef-
fects arising from the slow variation of fluctuations along
the magnetic field, etc.) that may be of the same size.
There are two justifications for this. First, if the fluc-
tuation amplitudes and scales do not vary strongly with
Bθ/B, then the diamagnetic effects considered here dom-
inate so that our model is fully self-consistent [14, 15].
Second, the small effects we have neglected are not ex-
pected to have a particularly strong dependence on colli-
sionality. Thus, while inclusion of these effects may pro-
vide an offset to the momentum transport, we do not
expect them to modify the variation of Π/Qi with ν∗
presented here.
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