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We identify signatures of the intrinsic nonlinear interaction between light and mechanical motion in cavity
optomechanical systems. These signatures are observable even when the cavity linewidth exceeds the optome-
chanical coupling rate. A strong laser drive red-detuned by twice the mechanical frequency from the cavity
resonance frequency makes two-phonon processes resonant, which leads to a nonlinear version of optomechan-
ically induced transparency. This effect provides a new method of measuring the average phonon number of the
mechanical oscillator. Furthermore, we show that if the strong laser drive is detuned by half the mechanical fre-
quency, optomechanically induced transparency also occurs due to resonant two-photon processes. The cavity
response to a second probe drive is in this case nonlinear in the probe power. These effects should be observable
with optomechanical coupling strengths that have already been realized in experiments.
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Introduction. Spectacular advances in the quality factor of
nano- and micro-mechanical oscillators and their rapidly in-
creasing coupling to optical and microwave resonators have
given rise to remarkable progress in the field of cavity op-
tomechanics [1, 2]. This has enabled cooling of mechanical
oscillators to their motional quantum ground-state [3, 4] and
observations of optomechanically induced transparency [5–8],
quantum zero-point motion [9, 10], as well as squeezed light
and radiation pressure shot noise [11–13].

The interaction between light and mechanical motion due to
radiation pressure is intrinsically nonlinear. While several the-
oretical studies of the single-photon strong-coupling regime
have been reported recently [14–21], most realizations of cav-
ity optomechanics are still in the weak coupling limit where
the coupling rate is much smaller than the cavity linewidth.
Experiments to date have relied on strong optical driving,
which enhances the coupling at the expense of making the ef-
fective interaction linear. Realizations that show promise for
entering the strong coupling regime include the use of cold
atoms [11], superconducting circuits [6], microtoroids [22], or
silicon-based optomechanical crystals [4]. In the latter, a ratio
between the coupling rate and the cavity linewidth of 0.005
has been reported [23], and improvements seem feasible [18].
Increasing the coupling strength through collective effects in
arrays of mechanical oscillators has also been proposed [24].
To enter the nonlinear regime of cavity optomechanics is of
great interest, since it is only then that the internal dynamics
can lead to non-classical states [25].

In this article, we study corrections to linearized optome-
chanics and identify signatures of the intrinsic nonlinear cou-
pling that are observable even with a relatively weak optome-
chanical coupling. The nonlinear effects we discuss come
about due to the presence of a strong optical drive. We
show that if this drive is detuned by twice the mechanical
frequency from the cavity resonance frequency, two-phonon
processes become resonant. This gives rise to a nonlinear
version of optomechanically induced transparency (OMIT).

OMIT has been well studied in linearized optomechanics [26]
and is analogous to electromagnetically induced transparency
in atomic systems. We point out that the two-phonon induced
OMIT enables a precise measurement of the effective aver-
age phonon number of the mechanical oscillator. This pro-
vides an alternative to sideband thermometry [9, 10, 27, 28].
Furthermore, we show that OMIT also occurs if the drive is
detuned by half the mechanical frequency due to two-photon
resonances, and the cavity response to a second probe drive
is then nonlinear in probe power. We expect these effects to
be observable for coupling strengths that have already been
realized in experiments. Their observation would verify the
intrinsic nonlinearity of the optomechanical interaction and
thus open up the possibility of generating non-classical states.

To relate to previous work, we note that a two-phonon in-
duced transparency [29] can also occur in optomechanical
systems where the cavity frequency depends quadratically on
the position of the mechanical oscillator [30]. In addition, the
effect of ordinary linear OMIT on higher-order optical side-
bands was studied in Ref. [31].

Model. We consider a standard optomechanical system de-
scribed by the Hamiltonian Ĥ = Ĥsys + Ĥpump. The system
Hamiltonian is

Ĥsys = h̄ωrâ
†â+ h̄ωmĉ

†ĉ+ h̄g
(
ĉ+ ĉ†

) (
â†â− |āp|2

)
, (1)

where â (ĉ) is the photon (phonon) annihilation operator,
ωr (ωm) the bare cavity (mechanical) resonance frequency,
and g the single-photon coupling rate. The mechanical posi-
tion operator is x̂ =

√
h̄/(2mωm)ẑ, where ẑ = ĉ+ ĉ† and m

is the effective mass. The cavity mode is driven by a laser at
the frequency ωp. This drive will be referred to as the pump
and described by Ĥpump = ih̄(e−iωptΩpâ

† − h.c.). The con-
stant |āp|2 in Eq. (1) is included for convenience and simply
shifts the equilibrium position of the oscillator. We choose it
to ensure that 〈x̂〉 = 0 in the presence of the pump, such that
x̂ is the oscillator’s displacement from its average position.

The three-wave mixing term in Eq. (1) is the source
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of the phenomena we study here, as we go beyond the
usual linearization around a large cavity amplitude. Let us
move to a frame rotating at the pump frequency ωp and
perform a displacement transformation, such that â(t) →
e−iωpt [āp + â(t)]. We define ∆p = ωp−ωr 6= 0 as the pump
detuning from cavity resonance and choose āp = iΩp/∆p.
This results in the Hamiltonian Ĥ = Ĥ0 + Ĥ1, where

Ĥ0 = −h̄∆pâ
†â+ h̄ωmĉ

†ĉ+ h̄G
(
ĉ+ ĉ†

) (
â+ â†

)
, (2)

Ĥ1 = h̄g
(
ĉ+ ĉ†

)
â†â. (3)

We have introduced G = gāp and assumed, without loss of
generality, that āp is real. The coupling G is enhanced by the
square root of the average cavity photon number compared
to g and provides a bilinear coupling between photons and
phonons. This coupling has been well studied, and it is known
to give rise to effects such as sideband cooling [3, 4, 32, 33]
and OMIT [5–7, 26].

Identifying resonant nonlinear terms. The bilinear Hamil-
tonian Ĥ0 with ∆p < 0 simply describes two linearly cou-
pled harmonic oscillators. By a symplectic transformation,
we can express Ĥ0 in terms of new operators Â and Ĉ, which
are annihilation operators for the normal mode excitations of
the system. These excitations are in general superpositions of
photonic and phononic degrees of freedom. Up to a constant,
the Hamiltonian becomes

Ĥ0 = −h̄∆̃pÂ
†Â+ h̄ω̃mĈ

†Ĉ . (4)

We will assume thatG/ωm � 1, and that the pump frequency
ωp does not coincide with the sideband frequencies ωr ± ωm,
but rather that |ωm±∆p| is on the order of ωm. In this case, the
operator Â describes excitations that are photon-like, while Ĉ
describes phonon-like excitations. To second order in G/ωm,
we get Â = [1+2λ+λ−ρ/(1−ρ2)]â−λ+ĉ−λ−ĉ†−λ+λ−ρ â

†

and Ĉ = [1+2λ+λ−ρ/(1−ρ2)]ĉ+λ+â−λ−â†+λ+λ−ρ
−1 ĉ†

when we define ρ = ωm/∆p and λ± = G/(∆p ± ωm). The
normal-mode frequencies are ∆̃p = ∆p (1− 2λ+λ−ρ) and
ω̃m = ωm

(
1 + 2λ+λ−ρ

−1
)
.

We can now rewrite the Hamiltonian Ĥ1 in terms of the
normal-mode operators Â and Ĉ, which results in multiple
terms. However, since G/ωm � 1, we only retain terms
of nonzero order in G/ωm if they are resonant. We consider
two different pump detunings. First, if ∆p ∼ −2ωm, we find

Ĥ1 = h̄ g
(
Ĉ + Ĉ†

)
Â†Â+ Ĥ1,res, where the resonant terms

are

Ĥ1,res = h̄g1

(
Â†Ĉ2 + Ĉ†2Â

)
(5)

with g1 = −gG/ωm. This describes processes where one
photon-like excitation is created and two phonon-like exci-
tations are destroyed, and vice versa. On the other hand, if
∆p ∼ −ωm/2, the resonant terms are

Ĥ1,res = h̄g2

(
Â†2Ĉ + Ĉ†Â2

)
(6)
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FIG. 1. (color online). Setup when the pump detuning is (a) ∆p ≈
−2ωm and (b) ∆p ≈ −ωm/2. Note the difference in scale between
(a) and (b).

with g2 = −8g(G/ωm)2/3, which describes processes where
two photon-like excitations are created and one phonon-like
excitation is destroyed, and vice versa. The Hamiltonian (4)
combined with (5) or (6) gives rise to new effects beyond stan-
dard linearized optomechanics. These models can be stud-
ied for a general coupling rate g, but we focus here on the
presently experimentally relevant regime g/κ � 1. Specifi-
cally, we will investigate how the nonlinearities affect the re-
sponse of the optical cavity to a second probe drive.

Equations of motion. We now return to the representation
in terms of the original photon and phonon operators â and ĉ,
and include dissipation by input-output theory [34, 35]. The
cavity and mechanical energy decay rates are κ and γ, re-
spectively. We assume that κ � γ and that the system is
in the resolved sideband regime where ωm > κ, relevant to
most experimental realizations. Note that in the presence of
dissipation, the amplitude āp = Ωpχr(∆p), where the cav-
ity susceptibility is defined as χr(ω) = (κ/2 − iω)−1. The
drive strength Ωp is related to the laser power Pp through
|Ωp|2 = κextPp/(h̄ωp), where κext ≤ κ is the decay rate
of the cavity mirror through which the cavity couples to the
drive. We let κint describe other cavity losses, such as decay
through the other mirror, scattering out of the cavity mode,
absorption, etc. The sum of all decay rates equals the total
cavity linewidth κ = κext + κint.

The quantum Langevin equations are [36]

˙̂a = −
(κ

2
− i∆p

)
â− i(G+ gâ)(ĉ+ ĉ†) +

√
κ âin (7)

˙̂c = −
(γ

2
+ iωm

)
ĉ− iG(â+ â†)− igâ†â+

√
γ ĉin. (8)

We now introduce a weak second optical drive, the probe,
with frequency ωs close to the cavity resonance frequency ωr.
This is described by Ĥprobe(t) = ih̄(e−iδtΩsâ

† − h.c.) in
the frame rotating at the pump frequency, with δ = ωs − ωp

being the frequency difference between the probe and the
pump. See Fig. 1 for an overview of the frequencies in-
volved. The frequency |Ωs| is related to the probe power
Ps by |Ωs|2 = κextPs/(h̄ωs). The optical input operator
in Eq. (7) becomes

√
κ âin(t) = e−iδtΩs +

√
κextξ̂ext(t) +√

κintξ̂int(t), where the vacuum noise operators ξ̂ext obey
〈ξ̂ext(t)ξ̂

†
ext(t

′)〉 = δ(t − t′) and 〈ξ̂†ext(t)ξ̂ext(t
′)〉 = 0 and

similarly for ξ̂int. The mechanical oscillator is not driven,
but coupled to a thermal bath, such that the mechanical in-
put operator obey 〈ĉin(t)ĉ†in(t′)〉 = (nth + 1)δ(t − t′) and
〈ĉ†in(t)ĉin(t′)〉 = nthδ(t−t′), where nth = (eh̄ωm/kBT−1)−1
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and T is the bath temperature. We will solve Eqs. (7) and (8)
perturbatively in the single-photon coupling g [37]. The cou-
pling G cannot be treated perturbatively, but we will exploit
the fact that G/ωm � 1.

The presence of two optical drives gives rise to a beat note
in the optical intensity at frequency δ 6= ωm, and thus an off-
resonant drive on the mechanical oscillator. To avoid para-
metric instability, the cavity frequency modulations due to the
coherent motion induced by this beat note should be much
smaller than the cavity linewidth, giving gG|Ωs|/(κωm)� κ
by an order of magnitude estimate. This is easily fulfilled for a
weak probe drive (|Ωs|/κ ∼ 1) when G/ωm, g/κ � 1. Note
that other instabilities can also arise [38] and must be avoided.

It is again convenient to move to the normal mode basis and
derive Langevin equations for the operators Â and Ĉ. This
still gives equations with linear coupling terms whenever dis-
sipation is present. However, let us consider the extreme re-
solved sideband limit κ/ωm � 1 first, where they simplify
to

˙̂
A = −

(κ
2
− i∆̃p

)
Â+

i

h̄
[Ĥ1, Â] +

√
κ âin (9)

˙̂
C = −

(
γ̃

2
+ iω̃m

)
Ĉ +

i

h̄
[Ĥ1, Ĉ] +

√
γ̃ c̃in. (10)

The effective mechanical linewidth is γ̃ = γ − νκ where ν ≡
4λ+λ−ρ/(1− ρ2) < 0 for ∆p < 0. The effective frequencies
ω̃m and ∆̃p were defined above. Note that |ν| ∼ (G/ωm)2 �
1 such that the effective mechanical linewidth is still small
compared to the cavity linewidth, i.e. γ̃ � κ. The effective
mechanical noise operator is defined by

√
γ̃ c̃in =

√
γ ĉin +√

κ(λ+ξ̂ + λ−ξ̂
†) when ignoring the beat note and defining√

κ ξ̂ ≡ √κextξ̂ext +
√
κintξ̂int. Its autocorrelation properties

are the same as for ĉin, but with nth replaced by the effective
phonon number nm = (γnth + κλ2

−)/γ̃.
Two-phonon induced transparency. We start by focusing

on the case of a pump detuned by twice the mechanical fre-
quency, ∆̃p = −2ω̃m, where two-phonon processes are reso-
nant according to Eq. (5). Such processes have been studied
before for systems with so-called quadratic optomechanical
coupling [30], and it has been shown that they can lead to
OMIT [29] much in the same way as single-phonon processes
do with ordinary linear optomechanical coupling [26]. We
will now see that two-phonon induced transparency can also
occur in the case of linear optomechanical coupling, without
the need for a nonzero quadratic coupling [39].

By solving Eqs. (9) and (10) perturbatively in the single-
photon coupling g and transforming back to the original oper-
ators, we calculate the optical coherence 〈â(t)〉 at frequen-
cies close to the resonance frequency. Defining the probe
beam detuning by ∆s = ωs − ωr and the effective detuning
∆̃s = ∆s −∆p + ∆̃p, we find 〈â(t)〉 = e−iδtās where

ās = ās,0

(
1− α− 2g2

1 χr(∆̃s)〈ẑ2
0〉

γ̃ − i(∆̃s − ∆̃p − 2ω̃m)

)
(11)

and ās,0 = Ωsχr(∆̃s). The first term in Eq. (11) is the re-
sponse of an empty cavity. The second term α is a small
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FIG. 2. (color online). The cavity response |ās|2 in Eq. (11) in units
of n0 = (2|Ωs|/κ)2 for pump detuning ∆̃p = −2ω̃m. The parame-
ters are G/ωm = 0.05, κ/ωm = 0.1, |Ωs|/κ = 0.01, nth = 1, and
ωm/γ = 105. Upper solid: g/κ = 0.01. Lower solid: g/κ = 0.03.
Dashed: g/κ = 0. Dots: Numerical results.

and unimportant correction due to off-resonant processes [40].
The last term gives rise to a narrow dip of width 2γ̃ in the co-
herent amplitude as well as a group delay of the input signal.
This is analogous to the well-studied case of linear OMIT for
pump detuning ∆̃p = −ω̃m. In the case of ∆̃p = −2ω̃m, how-
ever, the effect is not due to coherent driving of the mechanical
oscillator [41]. The size of the effect rather depends on the av-
erage mechanical fluctuations through 〈ẑ2

0〉 ≡ (2nm+1). This
is connected with the fact that the interaction (3) produces
optical sidebands at integer multiples of ωm, whose magni-
tudes will increase with the size of the mechanical fluctua-
tions. Note that 〈ẑ2

0〉 can be increased by mechanically driving
the oscillator.

If the system is not in the extreme resolved sideband limit
κ/ωm � 1, Eq. (11) is still valid with some corrections to the
parameters, which can be found in Ref. [42].

The cavity response |ās|2 to the probe drive is plotted in
Fig. 2 for g/κ = 0.01 and 0.03. The dip in |ās|2 corresponds
to a dip in either transmission or reflection of the probe de-
pending on the experimental setup. The parameters we used
are expected to soon be within reach for silicon-based optome-
chanical crystals [23]. We note that experimental studies of
linear OMIT [5–7] have showed the ability to resolve dips at
the percent level. Coherent interference dips are in general
much easier to resolve than the incoherent noise peaks usu-
ally measured in sideband thermometry [3, 9, 10, 27, 28].

The result (11) provides a new way of measuring the aver-
age phonon number of the mechanical oscillator. To see this
in an easy way, let us assume κ/ωm � 1 and ∆̃p = −2ω̃m,
and that the mechanical oscillator is not driven. We define
the dimensionless size of the dip d ≤ 1 at ∆̃s = 0 as
d ≡ 1 − |ās/ās,0(1 − α)|2 = 2K1 (2nm + 1) to lowest or-
der in g, where K1 = 4g2

1/(κγ̃) is the effective single-photon
cooperativity. In the limit where the optical broadening of the
mechanical linewidth is significant, i.e. κ(G/ωm)2 � γ, the
size of the dip becomes d = 9(g/κ)2(2nm + 1). We observe
that the dip size d increases with temperature, and does not
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depend on the probe drive strength |Ωs|. Note that Fig. 2 is
the response in the low-temperature regime nm � 1, showing
that the effect could be a useful tool for verifying ground state
cooling.

The linear dependence on the oscillator fluctuations 〈ẑ2
0〉 is

a result of using perturbation theory, and is only valid when
g
√
〈ẑ2

0〉/κ � 1. To gain further insight, let us consider the
high-temperature regime, nm � 1. For ∆̃s = 0 and ∆̃p =
−2ω̃m, a semiclassical approximation gives ās ≈ ās,0/(1 +
α + K1〈ẑ2

0〉), from which Eq. (11) follows by expansion in
g
√
〈ẑ2

0〉/κ. Thus, while a dip at the percent level as in Fig. 2
can be observable, the effect should be easily detectable in
the high-temperature regime. For example, for an oscillator
at room temperature with ωm = 2π × 3 GHz, g/κ = 0.01,
ωm/γ = 105, κ/ωm = 0.1, and G/ωm = 0.05, we get nth =
2× 103 and nm = 90, and the dip size becomes d = 0.14.

Finally, we note that while the two-phonon OMIT is a clas-
sical effect, its presence in the low-temperature limit nm → 0
is solely due to mechanical quantum zero-point fluctuations.

Two-photon induced transparency. We now consider the
case of the pump drive detuned by half the mechanical fre-
quency, ∆̃p = −ω̃m/2, giving rise to the Hamiltonian (6).
Again, we calculate the optical coherence for frequencies
close to the cavity resonance frequency, restricting ourselves
to the regime κ/ωm � 1 for simplicity. We find 〈â(t)〉 =
e−iδtās with

ās = ās,0

(
1− α− 2g2

2 |ās,0|2χr(∆̃s)

γ̃/2− 2i(∆̃s − ∆̃p − ω̃m/2)

)
, (12)

when ignoring a very small term of order α(G/ωm)4. There
is also an OMIT effect in this case, as seen from the last
term in Eq. (12), since two probe photons can be con-
verted to one phonon and vice versa. The dip size for
∆̃p = −ω̃m/2 at ∆̃s = 0 becomes d = 4K2|2Ωs/κ|2 =
32(g/κ)2(G/ωm)2|2Ωs/κ|2, where the cooperativity isK2 =
4g2

2/(κγ̃) and the second equality assumes γ̃ � γ. The am-
plitude |ās|2 for ∆̃p = −ω̃m/2 is plotted in Fig. 3. We see that
even for g/κ� 1, the dip could be observable as it grows with
increasing probe power. Note that this effect does not depend
on mechanical fluctuations, but is a result of coherent mo-
tion of the oscillator at the mechanical resonance frequency
induced by two-photon processes.

Numerics. To corroborate our analytical results, we have
numerically solved the quantum master equation [42]. Figs. 2
and 3 show that the numerical and analytical calculations are
in good agreement.

Conclusion. We have studied corrections to linearized op-
tomechanics and identified signatures of the intrinsic nonlin-
ear coupling between light and mechanical motion. The sig-
natures are nonlinear versions of optomechanically induced
transparency, that come about due to resonant two-photon
or two-phonon processes in the presence of a strong, off-
resonant optical drive. These effects are observable even
when the single-photon coupling rate is smaller than the cav-
ity linewidth and are thus relevant to present day experiments
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FIG. 3. (color online). The cavity response |ās|2 in Eq. (12) in
units of n0 = (2|Ωs|/κ)2 for pump detuning ∆̃p = −ω̃m/2. The
parameters are G/ωm = 0.05, κ/ωm = 0.05, nth = 0, and
ωm/γ = 105. Upper solid: g/κ = 0.1 and |Ωs|/κ = 0.4. Lower
solid: g/κ = 0.01 and |Ωs|/κ = 15. Dashed: g/κ = 0. Dots:
Numerical results (only available for weak probe drives). (The small
difference for larger ∆̃s comes from a difference in Re α.)
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Note added. During the final stages of this project, we be-
came aware of related works by Lemonde, Didier, and Clerk
[44] and by Kronwald and Marquardt [45].
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