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We investigate the effective interaction between two microwave fields, mediated by a transmon-
type superconducting artificial atom which is strongly coupled to a coplanar transmission line. The
interaction between the fields and atom produces an effective cross-Kerr coupling. We demonstrate
average cross-Kerr phase shifts of up to 20 degrees per photon with both coherent microwave fields
at the single-photon level. Our results provide an important step towards quantum applications
with propagating microwave photons.

In recent years, there has been great interest in using
photons as quantum bits for quantum information pro-
cessing [1]. The implementation of quantum logic gates
using photons requires interactions between two fields
[1, 2]. One possible coupling mechanism is the Kerr ef-
fect, where the photons interact via a nonlinear medium.
By means of the Kerr effect, quantum logic operations
such as the controlled phase gate [3], the quantum Fred-
kin gate [4] and the conditional phase switch [5] can be
realized. Moreover, quantum nondemolition (QND) de-
tection of propagating photons using the Kerr phase shift
has been discussed in the literature [6]. Superconduct-
ing qubits provide a very strong nonlinearity [7, 8] that
might be suitable for this purpose.

In cavity QED experiments, Kerr phase shifts on the
order of 10 degrees have been measured at the single-
photon level [9]. However, in this configuration, the pres-
ence of the cavity limits the bandwidth, which constrains
its usefulness over a wide range of frequencies. Therefore
an open quantum system without a cavity is advanta-
geous. An example of such a system is atoms coupled to
a 1D electromagnetic environment. A Kerr phase shift
is also present in these systems, but so far the measured
phase shift has been very small. In nonlinear photonic
crystal fibers, for instance, an average Kerr phase shift of
10−2 degrees per photon has been measured [10, 11]. A
new class of open quantum systems has been made pos-
sible by progress in circuit QED, providing a fascinat-
ing platform for engineering light-atom interactions [12–
19] and testing fundamental aspects of quantum physics
[20]. For instance, the generation of nonclassical states
exhibiting photon antibunching has recently been demon-
strated in such an open quantum system [21–23].

In this letter, we realize a cross-Kerr interaction be-
tween two microwave fields by coupling a superconduct-
ing artificial atom, known as a transmon [26], to an open
transmission line. We employ two device configurations:
Device 1 (Fig. 1A) has a transmon in an open transmis-
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FIG. 1: A micrograph of Device 1 in A) and Device 2 in B)
with measurement setup using heterodyne detection (HD).
Device 1 and 2 have an artificial atom, a transmon qubit, em-
bedded in a 1D open transmission line and at the end of a
transmission line, respectively. In B), we measure the reflec-
tion coefficient of the probe and control fields simultaneously.
C) The three-level artificial atom driven by a probe (red)
and a control tone (blue). The artificial atom acts as a Kerr
medium, which enables photon-photon interaction.

sion line [7, 8, 21], and Device 2 (Fig. 1B) has a transmon
at the end of a transmission line. Due to the strong cou-
pling between atom and field, we achieve average phase
shifts up to 10 and 20 degrees per photon at the single-
photon level for Device 1 and 2, respectively. This is sev-
eral orders of magnitude larger than in optical systems
[10, 11]. We stress that the Kerr effect demonstrated
here is purely due to the coherent interaction between the
fields and the transmon. This differs greatly from what
has previously been demonstrated in superconducting de-
vices where utilization of the kinetic inductance of a su-
perconducting film [27] or the Josephson inductance of a
Superconducting Quantum Interference Device (SQUID)
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FIG. 2: Transmission coefficient for the probe, as a function of ωp and control power, Pc, for low probe powers, Ωp ≪ γ10
in Device 1 (see the Supporting Online Material (SOM) for Device 2). (A) Top: Measured transmission coefficient with

Pc = −116 dBm, |t
(on)
p | (black), and Pc turned off, |t

(off)
p | (grey). Bottom: corresponding phase response. (B) Measured

amplitude response, ∆tp. (C) Measured phase response, ∆ϕp. Top panels: as a function of probe frequency and control power.
Bottom panels: horizontal line cuts (dots) and theory curves (solid lines). Brown arrows show the frequency that maximizes
the phase response. The theory curves [24, 25] are fit simultaneously to extract γ20/2π = 150 MHz along with the control
field coupling. The following other parameters, also used in the calculations, are independently measured with single-tone and
two-tone spectroscopy: ω10/2π = 7.10 GHz, ω21/2π = 6.38 GHz, Γ10/2π = 74 MHz, γ10/2π = 60 MHz and the probe field
coupling.

[28] requires a pump tone power at least several orders
of magnitude higher than those used in this experiment.

The transmon is strongly coupled through a capaci-
tance Cc to a 1D transmission line with a characteristic
impedance of Z0 = 50 Ω. An external magnetic flux
allows us to tune the frequencies ω10 = E1 − E0 and
ω21 = E2 − E1 of the allowed dipole transitions of the
transmon. From a theoretical point of view, Device 1
and 2 are essentially the same, with one difference: the
emitted field from the transmon can propagate in two di-
rections for Device 1, but only in one direction for Device
2 since it is placed at the end of the transmission line. In
the context of quantum measurement, we anticipate that
it may be beneficial to have all information confined to a
single channel (Device 2), instead of distributed between
two (Device 1). Moreover, as we will show later, we find
that Device 2 is a better Kerr medium. For both de-
vices, the photon-photon interaction is mediated by the
three-level transmon. We apply two continuous tones,
the probe at ωp ≈ ω10 and the control at ωc = ω21 (see
Fig. 1C). We observe the induced amplitude and phase
shift of the probe as the control tone is turned on and off.
The response depends on the powers and the detunings
of the probe and the control tones. In the following, we
quantify the effect of these parameters on the response.

The electromagnetic field in the transmission line can

be described by the complex voltage amplitudes for the
incoming field, Vin, and the resulting transmitted and
reflected fields, VT and VR respectively. For Device 1,
we then define the complex transmission and reflection
coefficients as tp = 〈VT 〉 / 〈Vin〉 and rp = 〈VR〉 / 〈Vin〉,

respectively, where 〈x〉 = T−1
m

∫ Tm

0 dτ x(τ) denotes aver-
aging over the measurement time, Tm. Thus, tp and rp
measure the phase coherent signal. Some of the input
signal is incoherently transmitted or reflected , such that
|rp|

2 + |tp|
2 < 1. Importantly, this does not necessarily

imply any power dissipation in the device. In particu-
lar, the portions of the reflected and transmitted signals
resulting from spontaneous emission average to zero in
〈VT 〉 and 〈VR〉.

We first characterize the devices spectroscopically. The
response of both devices is qualitatively similar, so for
clarity, we describe that of Device 1 in more detail. Re-
sults for Device 2 are presented in the Supporting Online
Material (SOM). Device 1 is characterized by measur-
ing tp as a function of probe frequency, ωp, at low probe
power, Pp. The extinction dip provides the |0〉 ↔ |1〉
transition frequency. The |1〉 ↔ |2〉 transition can then
be directly measured using 2-tone spectroscopy [8]. We
extract ω10/2π = 7.10 GHz and ω21/2π = 6.38 GHz, giv-
ing an anharmonicity of α/2π = 720 MHz between the
two transitions.
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FIG. 3: Probe phase shift, ∆ϕp, induced by a weak control pulse. Solid curves are theoretical fits to the data, including
additional data in the SOM. The fitting parameters for each device are γ20 and the control field coupling. Other parameters
are measured independently through spectroscopy. All parameters are listed in Table I. (A) The control pulse induces a phase
shift, ∆ϕp, of the continuous probe in the time domain. The length of the pulse is 1 µs for device 1 and 7 µs for device 2. (B)
∆ϕp as a function of ωp for three different probe powers and 〈Nc〉 ≃ 0.3, for Device 1. Note that here the |0〉 ↔ |1〉 transition is
7.26 GHz (due to a different external magnetic flux, Φ). (C) ∆ϕp as a function of 〈Nc〉 for a weak probe at a probe frequency
that maximizes the probe phase shift. Each data point is an average over 2 million control pulses. An average phase shift of
10 degrees per control photon is observed in Device 1, and 20 degrees per control photon in Device 2. (D) |rp,2| and |rc,2| as a
function of 〈Nc〉. The dashed blue line indicates |rc,2| = 0.9. Extensive measurements of rp,2 are presented in Fig. S4A of the
SOM.

We can then explore the two-tone response in more
detail. A coherent probe (control) signal will drive co-
herent oscillations of the |0〉 ↔ |1〉 (|1〉 ↔ |2〉) dipole at
a Rabi frequency, Ωp (Ωc), which is linear in the probe
(control) amplitude. Fig. 2A shows the magnitude (top)
and phase (bottom) of tp for Device 1 with control on,

t
(on)
p , and control off, t

(off)
p . We can clearly see the forma-

tion of the Autler-Townes doublet in |t
(on)
p | [24, 29]. The

doublet states appear as a pair of minima in the black
curves of Fig. 2A with a separation given by Ωc.

Fig. 2B shows the measured amplitude response, ∆tp,
defined as the difference between the magnitude of the

probe transmission ∆tp = |t
(on)
p | − |t

(off)
p |. Fig. 2C shows

the corresponding phase response, ∆ϕp. For these mea-
surements the probe Rabi frequency, Ωp, is much less
than the 1-0 decoherence rate, γ10. The solid curves in
the lower panels are calculated using a Lindblad master
equation for an open, driven, three-level system [24, 25].
This model includes parameters representing the relax-
ation rates Γ10, the pure dephasing rate Γφ,10 for the
coherence between |0〉 and |1〉, and the 2-0 decoherence
rate, γ20 [24, 25]. The values for these parameters are
given in the caption. From these, we calculate the de-
coherence rate γ10 = Γ10/2 + Γφ,10. As expected, the
maximum induced amplitude response occurs when the
probe is on resonance, and the induced phase response is
maximized when the probe is detuned from resonance by
an amount δωp = ωp − ω10 ≈ 2π × 20 MHz.

Quantum applications of cross-Kerr media typically re-

quire large phase shifts at the single-photon level. There-
fore, we now quantify the cross-Kerr phase shift in the
limit of low control power [30]. In this limit, the cross-
Kerr phase shift is given by ∆ϕp = k Pc, where k is the
Kerr coefficient. To convert this to a phase shift per con-
trol photon, we note that the average number of control
photons 〈Nc〉 per interaction time, 2π/Γ21, is given by
〈Nc〉 = 2π Pc/(h̄ωcΓ21), so ∆ϕp is proportional to 〈Nc〉.
For reference, 〈Nc〉 = 1 corresponds to Pc = −122 dBm
(= 0.64 fW) and 〈Np〉 = 1 corresponds to Pp = −124.5
dBm for Device 1, with Pc = −123.4 dBm and Pp = −126
dBm the corresponding numbers for Device 2.

Figure 3B shows the probe phase response, ∆ϕp, as a
function of probe frequency for several very weak probe
powers (with a control power of Pc = −127 dBm, i.e.
〈Nc〉 ≃ 0.3). As in Fig. 2C, the maximum phase shift
occurs at a probe detuning of δωp/2π ≈ 20 MHz. At this
point, we measure ∆ϕp as a function of 〈Nc〉, with the
results shown in Fig. 3C. For 〈Nc〉 = 1, we observe a
phase shift of approximately 20 degrees for Device 2 and
10 degrees for Device 1 [35].

To further characterize the response of Device 2,
Fig. 3D shows the corresponding magnitudes |rp,2| and
|rc,2| as a function of 〈Nc〉. Here we use the addi-
tional subscript “2” to distinguish the coefficients for
device 2, which have a different functional form than
for device 1. The dependence of |rp,2| and |rc,2| on
〈Nc〉 can be understood in terms of dephasing. For De-
vice 2 (Fig. 1B), the reflection coefficient is defined as
rp,2 = 〈VR〉 / 〈Vin〉 where VR is the sum of the incoming
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- Spectroscopic Kerr Derived

Device EJ/h EC/h ω10/2π ω21/2π Γ10/2π Γφ,10/2π γ20/2π Γ21/2π γ10/2π EJ/EC δωp/2π |∆ϕp/ 〈Nc〉 |

1 13.1 0.59 7.26 6.54 0.074 0.020 0.160 0.148 0.057 22.2 0.02 10o

2 11.99 0.42 5.916 5.50 0.063 0.015 0.093 0.126 0.047 28.5 0.009 20o

TABLE I: Parameters for Device 1, 2. The first six parameters, labelled “Spectroscopic”, are determined from single-tone and
two-tone spectroscopy. The parameter γ20 is extracted from fitting the Kerr data in Fig. 3. These 7 parameters are used to
derive the remaining quantities. All dimensionful quantities are in GHz. Note that some parameters for Device 1 are different
than in Fig. 2 because the device was operated at a different flux bias.

field and the field emitted by the transmon. We then
find rp,2 = 1 + 2i(Γ10/Ωp)〈σ−〉, where σ− = |0〉〈1| is the
atomic lowering operator. The factor of 2 in the 2nd
term is a consequence of having only one emission chan-
nel for the atom. For a weak resonant probe (ωp = ω10,
Ωp << γ10), we find the following expression [31]:

|rp,2| =

∣

∣

∣

∣

1−
2

1 + 2Γφ,10/Γ10

∣

∣

∣

∣

. (1)

In Fig. 3D, for a fixed δωp/2π ≈ 9 MHz, the low control-
power limit of |rp,2| ≈ 0.4 is determined by Γφ,10 and
Γ10. As 〈Nc〉 increases, we see that |rp,2| decreases. This
effect is due to the power broadening of the linewidth of
state |1〉 induced by the control tone, which effectively
increases the dephasing rate. Therefore, with phase-
sensitive detection, the coherent signal |rp,2| becomes
weaker as 〈Nc〉 increases. We also see |rc,2| ∼ 0.90 is
relatively constant, though it increases to unity as the
transition saturates at high power, Ωc ≫ γ21. With a
weak probe, Ωp ≪ γ10, there is a low probability of the
atom being in the first excited state. As a result, the
probability of the atom scattering a control photon is
very low, and the dephasing is small. Note that the re-
duction of |rp,2| and |rc,2| in Fig. 3D is not due to dissi-
pation but instead due to a loss of phase coherence in the
signal. Indeed, both 〈Nc〉 and 〈Np〉 are conserved, which
has been confirmed in our previous work [21, 32].
We have demonstrated a Kerr medium working in

the semiclassical regime, showing good performance and
good agreement with theory. Cross-Kerr media have long
been proposed for quantum applications such as the QND
measurement of photon number [6]. Therefore, it is in-
teresting to estimate what the performance of the device
would be in this application. To achieve QND photon
counting, the phase shift of the probe produced by a sin-
gle photon in the control mode (i.e. the signal) must be
resolved above the probe phase noise, that is, the signal-
to-noise ratio (SNR) should be greater than 1. Following
the approach of Ref. [33] (see SOM), we calculate the
optimum SNR using the parameters of Device 2. We
consider also whether the performance is enhanced by
exchanging the role of probe and control. In fact, we
find this arrangement (ωp ≈ ω21 and ωc ≈ ω10) to be
best, giving a SNR of 0.38 measuring a single-photon
Fock state and assuming the only noise is vacuum noise.

(With the probe and control as in Fig. 3, the SNR is
about a factor of 2 lower.) However, as discussed in Ref.
[33], due to a subtle interplay between transmon satura-
tion and vacuum noise, the probe phase noise for a single
transmon always dominates the cross-Kerr induced phase
shift, and it is found that SNR <

∼ 0.6 under very general
assumptions. Thus, our device is quite close to the theo-
retical optimum for cross-Kerr phase shifts. It, therefore,
potentially offers an important platform on which to test
proposals for cross-Kerr based protocols.

In conclusion, we have investigated the nonlinear inter-
action between two microwave fields at the single-photon
level induced by a three-level superconducting transmon.
In particular, we observed an average cross Kerr phase
shift of 20 degrees per photon between two coherent mi-
crowave fields. Compared to cavity-based systems [34],
this system has the advantage of being tunable in-situ

over a wide range of frequencies. Such giant Kerr phase
shifts may find applications in quantum information ap-
plications.

We acknowledge financial support from the Swedish
Research Council, the Wallenberg foundation, STINT
and from the EU through the ERC and the projects
SOLID and PROMISCE. TMS is funded by an ARC Re-
search Fellowship, and the ARC Centre of Excellence in
Engineered Quantum Systems. We would also like to
acknowledge G. J. Milburn and T. Duty for fruitful dis-
cussions.

∗ Electronic address: chris.wilson@uwaterloo.ca,per.

delsing@chalmers.se

[1] E. Knill, R. Laflamme, and G. J. Milburn, Nature 409,
46 (2001).

[2] J. H. Shapiro and M. Razavi, New J. Phys. 9, 16 (2007).
[3] Q. A. Turchette, C. J. Hood, W. Lange, H. Mabuchi, and

H. J. Kimble, Phys. Rev. Lett. 75, 4710 (1995).
[4] G. J. Milburn, Phys. Rev. Lett. 62, 2124 (1989).
[5] K. J. Resch, J. S. Lundeen, and A. M. Steinberg, Phys.

Rev. Lett. 89, 037904 (2002).
[6] W. J. Munro, K. Nemoto, R. G. Beausoleil, and T. P.

Spiller, Phys. Rev. A 71, 033819 (2005).
[7] O. Astafiev, A. M. Zagoskin, A. A. Abdumalikov, Y. A.

Pashkin, T. Yamamoto, K. Inomata, Y. Nakamura, and
J. S. Tsai, Science 327, 840 (2010).



5

[8] I.-C. Hoi, C.M. Wilson, G. Johansson, T. Palomaki,
B. Peropadre, and P. Delsing, Phys. Rev. Lett. 107,
073601 (2011).

[9] I. Fushman, D. Englund, A. Faraon, N. Stoltz, P. Petroff,
and J. Vuckovic, Science 320, 769 (2008).

[10] N. Matsuda, R. Shimizuand, Y. Mitsumori, H. Kosaka,
and K. Edamatsu, Nature Photonics 3, 95 (2009).

[11] V. Venkataraman, K. Saha, and A. L. Gaeta, Nature
Photonics 7, 138 (2012).

[12] Y. Nakamura, Y. A. Pashkin, and J. S. Tsai, Nature 398,
786 (1999).

[13] D. Vion, A. Aassime, A. Cottet, P. Joyez, H. Pothier,
C. Urbina, D. Esteve, and M. H. Devoret, Science 296

(2002).
[14] A. Wallraff, D. I. Schuster, A. Blais, L. Frunzio, R. S.

Huang, J. Majer, S. Kumar, S. M. Girvin, and R. J.
Schoelkopf, Nature 431, 162 (2004).

[15] M. Hofheinz, H. Wang, M. Ansmann, R. C. Bialczak,
E. Lucero, M. Neeley, A. D. O’Connell, D. Sank, J. Wen-
ner, J. M. Martinis, et al., Nature 459, 546 (2009).

[16] C. M. Wilson, T. Duty, F. Persson, M. Sandberg, G. Jo-
hansson, and P. Delsing, Phys. Rev. Lett. 98, 257003
(2007).

[17] M. Sandberg, F. Persson, I. C. Hoi, C. M. Wilson, and
P. Delsing, Physica Scripta T137, 014018 (2009).

[18] M. U. Staudt, I.-C. Hoi, P. Krantz, M. Sandberg,
M. Simoen, P. Bushev, N. Sangouard, M. Afzelius, V. S.
Shumeiko, G. Johansson, et al., J. Phys. B: At. Mol. Opt.
Phys. 45, 124019 (2012).

[19] D. Bozyigit, C. Lang, L. Steffen, J. M. Fink, C. Eich-
ler, M. Baur, R. Bianchetti, P. J. Leek, S. Filipp, M. P.
da Silva, et al., Nature Physics 7, 154 (2011).

[20] C. M. Wilson, G. Johansson, A. Pourkabirian,
M. Simoen, J. R. Johansson, T. Duty, F. Nori, and
P. Delsing, Nature 479, 367 (2011).

[21] I.-C. Hoi, T. Palomaki, J. Lindkvist, G. Johansson,
P. Delsing, and C. M. Wilson, Phys. Rev. Lett. 108,
263601 (2012).

[22] H. J. Carmichael, Phys. Rev. Lett. 70, 2273 (1993).
[23] D. E. Chang, A. S. Sorensen, E. A. Demler, and M. D.

Lukin, Nature Physics 3, 807 (2007).
[24] A. A. Abdumalikov, O. Astafiev, A. M. Zagoskin, Y. A.

Pashkin, Y. Nakamura, and J. S. Tsai, Phys. Rev. Lett.
104, 193601 (2010).

[25] B. Peropadre, J. Lindkvist, I.-C. Hoi, C. M. Wilson,
J. J. Garcia-Ripoll, P. Delsing, and G. Johansson, New
J. Phys. 15, 035009 (2013).

[26] J. Koch, T. M. Yu, J. Gambetta, A. A. Houck, D. I.
Schuster, J. Majer, A. Blais, M. H. Devoret, S. M. Girvin,
and R. J. Schoelkopf, Phys. Rev. A 76, 042319 (2007).

[27] E. A. Tholén, A. Ergül, E. M. Doherty, F. M. Weber,
F. Grégis, and D. B. Haviland, Appl. Phys. Lett. 90,
253509 (2007).

[28] M. A. Castellanos-Beltran, K. D. Iwin, L. R. Vale, G. C.
Hilton, and K. W. Lehnert, IEEE Trans. Appl. Super-
conductivity 19, 944 (2009).

[29] S. H. Autler and C. H. Townes, Phys. Rev. 100, 703
(1955).

[30] H. Schmidt and A. Imamoglu, Optics Letters 21 (1996).
[31] K. Koshino and Y. Nakamura, New Journal of Physics

14, 043005 (2012).
[32] I.-C. Hoi, C. M. Wilson, G. Johansson, J. Lindkvist,

B. Peropadre, T. Palomaki, and P. Delsing, New J. Phys.
15, 025011 (2013).

[33] B. Fan, A. F. Kockum, J. Combes, G. Johansson, I.-C.
Hoi, C. M. Wilson, P. Delsing, G. J. Milburn, and T. M.
Stace, Phys. Rev. Lett. 110, 053601 (2013).

[34] S. Rebic, J. Twamley, and G. J. Milburn, Phys. Rev.
Lett. 103, 150503 (2009).

[35] We comment that there is a systematic uncertainty, of or-
der 20%, in the calibration of 〈Nc〉 for device 1 in Fig. 3C.
For small probe and control powers, the parameters γ20
and Ωc cannot be determined independently with high
precision. At high control powers, the resolved Autler-
Townes splitting enables an independent calibration of
Ωc. This high-power calibration was unfortunately not
repeated for device 1 for the flux-bias point in Fig. 3. It
was, however, done for device 2.


