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Magnetic fields appear to be present in all galaxies and galaxy clusters. Recent measurements
indicate that a weak magnetic field may be present even in the smooth low density intergalactic
medium (IGM). One explanation for these observations is that a seed magnetic field was generated
by some unknown mechanism early in the life of the Universe, and was later amplified by various
dynamos in nonlinear objects like galaxies and clusters. We show that a primordial magnetic field is
expected to be generated in the early Universe on purely linear scales through vorticity induced by
scale-dependent temperature fluctuations or equivalently, a spatially varying speed of sound of the
gas. Residual free electrons left over after recombination tap into this vorticity to generate magnetic
field via the Biermann battery process. Although the battery operates even in the absence of any
relative velocity between dark matter and gas at the time of recombination, the presence of such a
relative velocity modifies the predicted spatial power spectrum of the magnetic field. At redshifts of
order a few tens, we estimate a root mean square field strength of order 10−25

−10−24 G on comoving
scales ∼ 10 kpc. This field, which is generated purely from linear perturbations, is expected to be
amplified significantly after reionization, and to be further boosted by dynamo processes during
nonlinear structure formation.

I. INTRODUCTION

Galaxies in the local Universe have coherent mag-
netic fields with strength ∼ 10−6G [1–3]. Similar fields
strengths are seen in galaxies up to redshift ∼ 2 [2, 4, 5].
One explanation is that the observed fields originated
from primordial magnetic fields which were created in
the very early Universe and were later amplified during
the formation of the galaxies. Another possibility is that
there were no primordial fields and the observed fields
were generated spontaneously during the gravitational
collapse of galaxies [6, 7].
There is independent evidence for a pre-galactic seed

magnetic field in the IGM. This is based on the lack of de-
tection of inverse Compton GeV radiation from charged
secondaries associated with extragalactic TeV sources. A
magnetic field greater than ∼ 10−16 G can deflect secon-
daries sufficiently to explain the observations [8, 9]; the
required field strength has been reduced to 10−18G in a
recent study [10]. This evidence for magnetic fields in the
IGM emphasizes the notion that the fields are primordial
(see Ref. [11]), although it is possible that the fields orig-
inated by baryonic outflows from already formed galax-
ies [6, 7]. We note that the absence of secondary radiation
from TeV sources may have nothing to do with a mag-
netic field but be the result of beam instabilities which
slow down the particles before they can produce signifi-
cant inverse Compton radiation [12] (but see Ref. [13]).
Other recent studies which have considered the influence
of primordial magnetic fields on the cosmic microwave
background (CMB) and Lyα clouds [14–16] give an up-
per limit on the present day large scale magnetic field in
the IGM of ∼ 10−9G.
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In an influential study, Biermann (1950; Ref. [17])
showed that currents must flow whenever a plasma has
a rotational vortex–like motion. These currents will lead
to the generation of magnetic field starting from zero
field. The process has been coined in the literature as
the “Biermann battery”, and several astrophysical appli-
cations have been discussed. These range from the gener-
ation of magnetic fields in stars [17, 18] to seed magnetic
fields on galactic scales [19–23]. The latter studies typi-
cally use nonlinear gas-dynamical processes such as those
that occur in shocks during structure formation.

It has been argued that magnetic fields, at the time
of recombination, may be generated on large scales (>
600 kpc) through second-order couplings between pho-
tons and electrons [24]. Here we consider smaller scales,
and we show that seed magnetic fields can be produced
in the early Universe starting from zero field purely as a
consequence of the growth of linear over–densities. We
consider the evolution of density and temperature fluc-
tuations of the baryonic matter after the time of recom-
bination. We follow the approach described in Ref. [25],
where the key new effect that permits the generation of
magnetic fields is a spatially varying speed of sound. We
also consider the effect of the relative velocities between
the dark matter (DM) and baryons at the time of recom-
bination [26]. The latter effect has been shown to have
a considerable effect on the evolution of over–densities
at high redshifts [26–33]. Here we show that it has a
noticeable effect also on the growth of the magnetic field.

Throughout this paper, we adopt the following cosmo-
logical parameters: (ΩΛ, ΩM, Ωb, n, σ8, H0)= (0.72, 0.28,
0.046, 1, 0.82, 70 km s−1 Mpc−1) [34].
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II. LINEAR EVOLUTION OF

OVER–DENSITIES IN THE EARLY UNIVERSE

After cosmic recombination, the baryonic gas in the
Universe decouples mechanically from the photons, but
remains thermally coupled down to z ∼ 150. This cou-
pling is a result of CMB photons scattering off the resid-
ual free electrons, which constitute a fraction ∼ 10−4 of
the bound electrons. Even at z < 150 the baryons still
retain some memory of this heating, which induces scale-
dependent temperature fluctuations. Naoz & Barkana
(2005, Ref. [25]) took this effect into account and com-
puted the linear growth of baryonic density and tem-
perature fluctuations separately. At large wavenumbers
(k > 100 Mpc−1) the growth of baryon density fluctua-
tions is changed significantly by the effect of the inhomo-
geneous sound speed, by up to 30% at z = 100 and 10%
at z = 20. This has an important impact on high-z gas
rich halos [35].

It was shown recently that not only the amplitudes
of the DM and baryonic density fluctuations are differ-
ent at early times, so too are their velocities [26]. Af-
ter recombination, the sound speed of the baryons drops
dramatically, while the DM velocity remains high. As a
result, the relative velocity of baryons with respect to the
DM becomes supersonic. This relative velocity, which is
generally referred to as the “stream velocity” in the lit-
erature, remains coherent on scales of a few Mpc and is
of the order of ∼ 30 km s−1 at the time of recombina-
tion [26].

For completeness we write here the coupled second or-
der differential equations that govern the evolution of the
dimensionless density fluctuations of the DM δdm and of
the baryons δb:

δ̈dm + 2Hδ̇dm − fdm
2i

a
vbc · kδ̇dm = (1)

3

2
H2

0

Ωm

a3
(fbδb + fdmδdm) +

(

vbc · k
a

)2

δdm

δ̈b + 2Hδ̇b = (2)

3

2
H2

0

Ωm

a3
(fbδb + fdmδdm) −

k2

a2
kBT̄

µ
(δb + δT ) ,

where Ωm is the present day matter density as a fraction
of the critical density, k is the comoving wavenumber of
the perturbation, vbc is the relative velocity between the
baryons and DM in a local patch of the Universe, a is the
scale factor of the Universe,H0 is the present day value of
the Hubble parameter, µ is the mean molecular weight
of the gas, T̄ is the mean temperature of the baryons,
fb (fdm) is the cosmic baryonic (DM) fraction and δT
is the dimensionless baryon temperature fluctuation (see
Refs. [26, 33] for further discussion of these equations).
Derivatives are with respect to the clock time.

The linear evolution of the δT may be written down
similarly [25, 36]. Including an additional term due to

FIG. 1. Perturbation ratios δT /δb (top panel) and δT /δe (bot-
tom panel) as a function of wavenumber k. We consider two
cases: no stream velocity, vbc = 0 (solid lines), and a typi-
cal stream velocity, vbc = 1σvbc (dashed lines). Results are
shown for two redshifts, z = 100 (blue lines) and z=30 (red
lines).

fluctuations of the electron over–density δe:

δ̇T =
2

3
δ̇b +

xe(t)

tγ
a−4

{

T̄γ

T̄

(

δTγ
− δT

)

+ (δγ + δe)

(

T̄γ

T̄
− 1

)}

, (3)

where δγ is the photon density fluctuation, t−1
γ = 8.55×

10−13 yr−1, and T̄γ and δTγ
are the mean photon tem-

perature and its fluctuation, respectively.
The evolution of the mean free electron fraction xe as

a function of time is

ẋe = −αB(T )x
2
enH(1 + y) , (4)

where αB(T ) is the case B recombination coefficient as
a function of the gas temperature, nH is the total hy-
drogen number density, and y = nHe/nH where nHe is
the helium number density. Fluctuations in the electron
density, δe = ∆ne/ne = ∆xe/xe, evolve according as

δ̇e = −αB(T )(1 + y)xenH(δb + δe) . (5)

We show below that the magnetic field grows because of
the presence of the residual free electrons. It is highly
sensitive to the evolution of δe, but not to the actual
electron number density.
Equation (3) describes the evolution of the gas tem-

perature in the post-recombination era but before the
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formation of the first galaxies, when the only external
heating arises from Compton scattering of the remaining
free electrons on the CMB photons [25]. The first term
in Equation (3) describes the adiabatic cooling of the
gas, while the second term is the result of Compton in-
teractions. An important effect of this equation is that it
introduces a scale dependent behavior in the fluctuations
of the temperature, free electron density and baryon den-
sity. In this full thermal evolution calculation, the sound
speed (c2s = dp/dρ, where p is the pressure of the gas),
varies spatially, simply because δb and δT have the fol-
lowing relation

1 +
δT
δb

=
c2s

kBT̄ /µ
= γeff , (6)

where γeff is a scale dependent, effective adiabatic index.
In Figure 1 we show the ratios δT /δb (top panel) and

δT /δe (bottom panel) as a function of k. At the largest
scales (smallest k), the baryons follow the DM density,
and δT /δb evolves from 1/3 (at high redshift where the
baryons are tightly coupled to the relativistic CMB) to
∼ 2/3 (lower redshift where the baryons expand adiabat-
ically as an independent nonrelativistic fluid). Consider-
ing first the zero stream velocity case, small scales (large
k) at high redshift show Jeans scale oscillations which
are suppressed at lower redshift (there is only a slight
minimum for z = 30). For vbc = 1σvbc, the small scale
baryon fluctuations drop, and are less important com-
pared to the Compton heating [see Equation (3)] which
results in a slight increase of δT (compared to the zero
stream velocity). These two effects result in an increase
of the ratio δT /δb as a function of scale. The free elec-
tron fluctuations are further suppressed in the case of
vbc = 1σvbc compared to the case of zero stream velocity
which results in a larger increase in the ratio δT /δe.

III. BIERMANN BATTERY IN AN

EXPANDING UNIVERSE

The evolution of the magnetic field via the Biermann
battery process is described by a simple combination
of the Maxwell–Faraday equation and the generalized
Ohm’s law e.g., Ref. [37]. Since we are interested in mag-
netic field evolution over cosmic times, we work with the
Biermann battery equation in a flat expanding Universe.
In this case, we find that the differential equation for the
clock time evolution of the magnetic field B is given by:

∂

∂t

(

a2B
)

= a∇× (u×B)− c
∇ne ×∇Pe

en2
e

, (7)

where ne and Pe are the electron number density and
pressure respectively, e is the electron charge, u is the
peculiar velocity of the gas, and the spatial derivatives
are with respect to co-moving coordinates. This equa-
tion can be reduced to the familiar form of the Biermann
battery by rescaling the relevant quantities similarly to

Refs. [38, 39]. The resulting equation was used in describ-
ing a recent laboratory experiment of the Biermann bat-
tery [40]. Below we do not rescale the equations since δT
and δe have a complicated dependence on the scale factor
[25]. The term ∇× (u×B), describes flux freezing, i.e.,
the magnetic flux through any closed contour embedded
in the plasma is conserved under plasma motions. The
last term is the Biermann battery term, which is propor-
tional to the derivative with respect to time of the vortic-
ity of the electrons; a vortex–like motion of the electrons
produces an rotational electric field, and through this a
magnetic field.

FIG. 2. Root mean square magnetic field generated by the
Biermann battery as a function of wavenumber. Two cases
are shown: no stream velocity, vbc = 0 (solid lines), and a
typical stream velocity, vbc = 1σvbc (dashed lines). Three
redshifts are considered: z = 100 (blue lines), z = 30 (red
lines), z = 10 (black lines).

Consider now the Biermann term c∇ne × ∇Pe/en
2
e.

The electron pressure is given by Pe = nekBT , where,
following [25], we have set Te = T . Expanding the rele-
vant quantities to linear order, i.e., ne = n̄e(1 + δe) and
T = T̄ (1+δT ), and neglecting the flux-freezing term [41],
equation (7) can be written as:

∂

∂t

(

a2B
)

= −ckBT̄

e
∇δe ×∇δT . (8)

Note that ne cancels out and the Biermann effect de-
pends only on δe. Therefore, the fact that the ionization
fraction of the gas is very low (∼ 10−4) is not important.

The right hand side of equation (8) may be written in
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Fourier space as

−∇δe ×∇δT =
1

2

∫

d3k1
(2π)3

d3k2
(2π)3

(k1 × k2) e
ir(k1+k2)

×
[

δe(k1)δT (k2)− δe(k2)δT (k1)

]

.

(9)

Fourier transforming both sides of equation (8), we then
find

∂

∂t

(

a2Bk

)

=
1

2

ckBT̄

e

∫

d3k1
(2π)3

(k1 × [k− k1]) (10)

×
[

δe(k1)δT (k− k1)− δe(k− k1)δT (k1)

]

,

where Bk has units of GMpc3. The over–densities that
appear here are complex, i.e., δ(k) = |δ(k)|eiφk , where
each φk represents a random phase which is uniformly
distributed over the interval 0 to 2π. The phases disap-
pear below when we finally compute the power spectrum
of the magnetic field.
The Biermann battery produces a magnetic field only

if the gradients ∇δe and ∇δT in equation (8) are not par-
allel to each other. The equivalent condition in Fourier
space is that the quantity in square brackets in equation
(10) should be non-vanishing. The latter condition re-
quires the ratio δT (k)/δe(k) to vary with scale. This is
precisely where the correct treatment of the gas thermo-
dynamics, as described in Ref. [25], is critical. As Figure
1 shows, the ratio of temperature to density fluctuations
does vary with k, and therefore we expect the cosmo-
logical Biermann battery to operate even within linear
perturbation theory.
Let us define ∆e,T (k,k1) = δe(k1)δT (|k−k1|)−δe(|k−

k1|)δT (k1). Equation (10) then becomes

aH
∂
(

a2Bk

)

∂a
=

ckB
e

∫

d3k1
(2π)3

T̄ (t) (k1 × k)∆e,T (k, k1) ,

(11)
where ∂/∂a ≡ aH∂/∂t. In this equation, only ∆e,T and
T̄ depend on the time t (or equivalently the scale factor
a). Thus we can write equation (11) as

Bk(a) =

∫

2πdk1 sin θdθ

(2π)3
β(a, k, k1, θ) (k1 × k) , (12)

where the quantity β = β(a, k,
√

k2 + k21 − 2kk1 cos θ)
satisfies

aH
∂(a2β(a, k, k1))

∂a
=

ckB
e

T̄ (a)∆e,T (k, k1) . (13)

By numerically integrating equation (13), we can calcu-
late the two dimensional array of values β(k, k1) as a
function of scale a or redshift z. These β values still in-
clude the random phases φk. However, the phases are
eliminated when we compute the power spectrum of the

magnetic field PB. The result is

PB ≡ 〈BkB
⋆
k
〉 = (14)

1

V

∫

2πdk1 sin θdθ

(2π)3
|β(a, k, k1, θ)|2(k1k sin θ)2 ,

where V is the volume.
In Figure 2 we show PB as a function of wavenumber k

for different redshifts. The quantity
√
k3PB has units of

gauss. Note that the magnetic field grows most strongly
on the Jeans mass scale of the baryons. This is apparent
in the case of zero stream velocity, where the first peak is
around k−1 ∼ 16 kpc [comoving] at z = 100, correspond-
ing to a mass scale ∼ 7 × 104 M⊙. The second peak,
where the power is maximum, is associated with smaller
scales ∼ 7 kpc [comoving], which correspond to where
the most dramatic variation of the ratio δT /δe occurs
(see Figure 1). For the case of vbc = 1σvbc, we see the
inverse behavior. Here the first peak (larger scales) has
more power than the second peak (smaller scales). Note
that our use of linear theory is justified, since the den-
sity perturbations are still linear for scales smaller than
∼ 1000Mpc−1 [comoving] and become nonlinear only at
z < 10 (see Fig. 6 in Ref. [42]).

IV. DISCUSSION

We have shown that seed magnetic fields can be pro-
duced from zero initial magnetic field on cosmological
linear over–density scales through the Biermann process.
The typical field strength is ∼ 10−25 − 10−24G. These
seeds fields may later be amplified via nonlinear dynamo
processes [43, 44] and are perhaps responsible for the
present day magnetic fields in galaxies. Note that bary-
onic outflows can still contribute to the IGM magnetic
field [6]. The Biermann battery mechanism requires a
vortex like motion in the plasma. We have demonstrated
that the spatially varying speed of sound of gas in the
early Universe produces this vorticity in the residual free
electrons. The process does not depend on the fraction
of free electrons in the Universe but only on fluctuations
in this quantity.
During reionization, the temperature of the baryons

as well as temperature fluctuations will increase. This
will lead to even larger magnetic fields since equation (8)
shows that the magnetic field growth depends linearly
on T̄ , and the temperature after reionization increases to
T̄ → 104 K. The temperature and electron fraction fluc-
tuations are also expected to increase substantially [45].
Thus, the magnetic field could potentially increase post-
reionization by 4 − 6 orders of magnitude, bringing it
close to the 10−18G estimated from observations [8–10].
This value is about 6 orders of magnitude smaller com-
pared to other mechanisms in the literature that operate
on the relevant scales (see Ref. [7] for review), but com-
parable to Ref. [46]. However, the evolution of δe and
δT during and after reionization is model dependent. In
contrast, we have shown in this paper that, even before
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reionization, magnetic field can be generated as part of
the linear growth of perturbations in the Universe, and
that the field strength due to this process can be esti-
mated robustly with few uncertainties.
The effect described here (following Ref. [25]) produces

a vorticity in the baryonic gas on the order of∼ 10−20 s−1

at z ∼ 10 on scales ∼ 6 kpc. During reionization, as in
the case of the magnetic field, the vorticity in the gas may
again increase by 4 − 6 orders of magnitude, bringing it
close to 10−15 s−1, which is the vorticity of the Milky
Way Galaxy in the solar neighborhood.
Future measurements of the magnetic field in the IGM

and in filaments would be helpful to further clarify the
role of seed magnetic fields. Already, lower bounds on
the magnetic field in large scale structures [8–10, 47–
49] suggest that there must be a primordial seed field in
the Universe. The Biermann Battery process described
here, which operates through a spatially varying speed
of sound, can naturally explain these seeds. Our cal-

culation suggests that different coherent patches in the
Universe with different stream velocities may have up to
an order of magnitude variation in their magnetic fields.
Thus, seed magnetic fields could conceivably be used in
the future to study the stream velocity distribution in
the Universe.
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