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We introduce a solid-state qubit in which exchange interactions among confined electrons provide
both the static longitudinal field and the oscillatory transverse field, allowing rapid and full qubit
control via rf gate-voltage pulses. We demonstrate two-axis control at a detuning sweet-spot, where
leakage due to hyperfine coupling is suppressed by the large exchange gap. A π/2-gate time of 2.5 ns
and a coherence time of 19 µs, using multi-pulse echo, are also demonstrated. Model calculations
that include effects of hyperfine noise are in excellent quantitative agreement with experiment.

PACS numbers:

As originally conceived, the two-level system that
forms the basis of the semiconductor spin qubit is the
electron spin itself, with pulsed exchange between two
confined electrons forming a two-qubit gate [1]. Gener-
alizations to two-electron [2–6] and three-electron [7–13]
qubits make use of multi-electron states as the quantum
two-level system. These qubits offer ease of initialization,
control, and readout, or speed of operation, in exchange
for the complexity of controlling more than one electron
per qubit. An attractive feature of the original single-
spin proposal is that qubit rotations are implemented
as Rabi processes, driven by a small resonant transverse
field, rather than Larmor processes, which use pulsed
Larmor precession around larger nonparallel fields. Rabi
rotations allow narrow-band wiring away from dc, preces-
sion rates controlled by the amplitude of the oscillatory
field, and straightforward two-axis control (needed for ar-
bitrary transformations) implemented using the phase of
the oscillatory field [14, 15].

In this Letter, we introduce a new quantum-dot-based
qubit—the resonant exchange qubit—that captures the
best features of previous incarnations, with qubit rota-
tions via Rabi nutation using gate-controlled exchange
both for the static longitudinal field and the oscillatory
transverse field, as described in Ref. [16]. The large ex-
change field suppresses leakage from the qubit space.
However, because rotations are driven by a resonant
transverse field, the large longitudinal field does not im-
pose unrealistically fast evolution between qubit states.
Moreover, the qubit is operated at a “sweet spot” of the
exchange gap, making it insensitive to first order to elec-
trical noise in the detuning parameter [16–19].

The resonant exchange qubit was realized in a triple
quantum dot formed by surface gates 110 nm above a
two-dimensional electron gas (density 2.6 × 1015 m−2,
mobility 43 m2/Vs) in a GaAs/Al0.3Ga0.7As heterostruc-
ture [see Fig. 1(a)]. Gate voltages Vl and Vr controlled
detuning, ε = (Vr − V 0

r )/2− (Vl − V 0
l )/2, measured rel-

ative to the center of the 111 charge region, while Vm

controlled the size of the 111 region (111 and other num-
ber triplets denote the charge occupancy of the triple
dot) [20]. An adjacent multi-electron quantum dot oper-
ated in Coulomb blockade regime served as a radio fre-
quency (rf) charge sensor [21, 22].

Tunneling between adjacent quantum dots gives two
exchange splittings, Jl(ε), associated with the electron
pair in the left and middle dots, and Jr(ε), associated
with the electron pair in middle and right dots. Away
from zero detuning, defined as the center of 111, the
qubit ground state, |0〉 = 1√

6
(|↑↑↓〉 + |↓↑↑〉 − 2 |↑↓↑〉),

connects continuously to a singlet state of the left pair,
|Sl〉 = 1√

2
(|↑↓↑〉 − |↓↑↑〉) in charge state 201, and to a

singlet state of the right pair, |Sr〉 = 1√
2
(|↑↑↓〉 − |↑↓↑〉)

in charge state 102. [see Fig. 2(a)]. The excited qubit
state, |1〉 = 1√

2
(|↑↑↓〉 − |↓↑↑〉), maps into triplet states

that, in contrast to the singlets, cannot tunnel into charge
states 201 or 102. This allows the qubit state to be de-
tected with a charge sensor the distinguishes 201, 111,
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FIG. 1: (a) False color micrograph of lithographically iden-
tical device with dot locations depicted; gates are marked in
yellow. Gate voltages, Vl and Vr, set the charge occupancy of
left and right dot as well as the detuning, ε of the qubit. A
neighboring sensor quantum dot is indicated with a larger cir-
cle. (b) Triple dot charge occupancy Nl Nm Nr as a function
of Vl and Vr in and near the 111 regime; ε = (Vr − V 0

r )/2 −
(Vl − V 0

l )/2, δ = (Vr − V 0
r )/2 + (Vl − V 0

l )/2 + γ(Vm − V 0
m).

Measurements give γ ∼ 3. The operating position is marked
with a star, which is larger than the amplitude of voltage
modulation used in rotations.
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FIG. 2: (a) Energy level diagram for a constant δ. Charge
transitions are marked with circles (qubit-|Q+〉), triangles
(qubit-|Q+〉, photon), squares (qubit-|Q+〉, photon), and a
star (|0〉-|1〉) transitions. (b) Schematic of the effects of Jl and
Jr on the qubit Bloch sphere (c) The qubit-|Q+〉 anti-crossing
is mapped out in magnetic field and detuning without an ex-
citation. Dashed line is a model of the exchange splitting for
equal tunnel couplings. (d) A sweep of the middle plunger
gate at ε = 0 mV and fixed field of 575 mT, demonstrating
control of the main qubit transition. The dashed curve is a
model of Jl + Jr as a function of ε0 = (Vm − V 0

m)/2 [23].
(e) At a fixed field of 310 mT, detuning and microwave burst
frequency are swept to trace out the spectroscopy of the qubit.
(f) A model of qubit evolution in the presence of a microwave
excitation and magnetic field gradients between dots in the
longitudinal and transverse directions.

and 102. A third state, |Q+〉 = |↑↑↑〉, intersects the
qubit ground state at two anti-crossings whose posi-
tion depends on Zeeman splitting from an external mag-
netic field. By sweeping the magnetic field, the qubit
ground-state energy can be measured as a function of
detuning [Figs. 2(a,c)]. The fourth state in Fig. 2(a),
|Q〉 = 1√

3
(|↑↑↓〉 + |↑↓↑〉 + |↓↑↑〉), is separated from the

qubit states by a sizable gap (half the separation between
|0〉 and |1〉), suppressing leakage out of the qubit space.
The gap to |Q〉 is deliberately kept large by setting tun-
neling rates, hence Jl and Jr, to be large throughout the
111 charge region.

Qubit rotations are implemented by applying an oscil-
latory voltage to gate Vl, which moves the operating point

around ε = 0, in turn creating an oscillatory transverse
field Jx [see Fig. 2(b)]. When the oscillation frequency ω
matches the longitudinal exchange frequency, Jz/~ [see
Fig. 2(b)], the qubit nutates between |0〉 and |1〉. Fig-
ure 2(c) maps the positions of the |Q+〉 anti-crossings
with the lower qubit branch as a function of field and de-
tuning without applied microwaves, along with a model
calculation of the exchange splittings Jl and Jr. This
spectroscopy is performed by preparing a |Sr〉 state in
102, then pulsing into 111 for 300 ns before returning to
102 to project the resulting state back onto |Sr〉.

The data in Fig. 2(d) shows two features, a vertical
line corresponding to the crossing of |Q+〉 and the center
of the lower qubit branch (circle), and a curved feature
reflecting a driven oscillation between qubit states |0〉 and
|1〉, marked with a star. The curved feature shows that
the qubit splitting is controlled by gate voltage Vm, here
covering a range from 200 MHz to 2 GHz. Using fast
gating, we have demonstrated control of this frequency
on nanosecond time scales. The dashed line in Fig. 2(d)
is a model of ω(Vm) that assumes a linear dependence of
Jl and Jr on Vm.

The resonant exchange qubit can be modeled by the
Hamiltonian,

H(ε) = −Jzσz/2− Jxσx/2, (1)

where Jz = 1
2 (Jl(ε) +Jr(ε)) and Jx =

√
3
2 (Jr(ε)−Jl(ε)),

where σz = |0〉〈0| − |1〉〈1| and σx = |0〉〈1| + |1〉〈0| are
the Pauli operators of the qubit [see Fig. 2(b)]. Ex-
change fields Jl(ε) = −(ε + ε0)/2 +

√
t2 + (ε + ε0)2/4

and Jr(ε) = (ε − ε0)/2 +
√
t2 + (ε − ε0)2/4 are mod-

eled in terms of the tunnel coupling, t, which is taken
to be the same for both the 201-111 and 111-102 tran-
sitions, and ±ε0, the detunings of these charge transi-
tions. At ε = 0, this gives dJz/dε = 0 and dJx/dε =√

3
2 (1 − ε0/

√
4t2 + ε0

2). For small detuning, ε � ε0, Jz
is unchanged to first order while Jx ∼ ε. This system
is equivalent to a spin-1/2 in a large static field with a
small transverse field. While Jz is insensitive to detuning
noise to first order, it is not insensitive to noise on gate
Vm or other gates. However, other gates, including Vm,
do not need to operate at high frequency, and so can be
heavily filtered.

In Fig. 3, |Sr〉 is prepared in 102 and adiabatically
evolved to |0〉 at ε = 0, taking care to move rapidly
through the |Q+〉 anti-crossing. A microwave burst is
then applied to Vl for a time τB before returning adia-
batically to 102 for measurement. The color plot shows
the probability, P0, of detecting the ground state through
a charge measurement (see Sec. I, Supplemental Mate-
rial.) By sweeping frequency and power, we see patterns
characteristic of Rabi nutations subject to low frequency
noise in the splitting frequency, ω01 due to hyperfine
gradients (see Sec. VI, Supplemental Information). In
the rotating frame, the amplitude of the oscillation gives
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FIG. 3: (a) A Rabi nutation for a -45 dBm (0.45 mV) excita-
tion on the left plunger gate with the detuning biased to the
center of the transition [(?) in Fig. 2(a,e)] for a time τB. (b) A
Rabi nutation with a 0.355 GHz excitation on the left plunger
gate with the detuning biased to the center of the transition.
(insets) A model of this nutation using the exchange profile
from Fig. 2(f) and fluctuating longitudinal magnetic field gra-
dients.

the strength of the x̂ rotation, while the frequency de-
tuning, δ = ω − ω01, gives the strength of the ẑ rota-
tion. As seen in Fig. 3(b), as the power increases, ef-
fects of δ errors due to hyperfine gradients decrease. At
ω01/2π = 0.355 GHz, the nutation frequency scales with
voltage as dΩR/dVl ∼ 2π × 70 MHz/mV. This scaling
increases with dJx/dε, which grows as the 111 region
is shrunk (ε0 → 0) to increase ω01. At ω01/2π = 1.98
GHz, this scaling was measured to be ∼ 2π×5 GHz/mV,
demonstrating a way to increase coupling to external
voltages.

On resonance in the rotating frame, the Hamilton takes
the form Hrf = cos(Φ)σx + sin(Φ)σy, where Φ is the rel-
ative phase of the carrier wave with respect to the first
pulse incident on the qubit. Controlling phase relative to
the initial pulse thus allows full two-axis qubit control.
To test the qubit response, we prepare a |0〉 and drive
a rotation on resonance for a time τx, then apply a sec-
ond pulse at relative phase Φ to drive a 3π/2 rotation
in a time 3π/2ωR. Figure 4 shows data for Φ = 0◦, 90◦,
and 180◦, along with model curves using an optimized,
though reasonable, value for hyperfine couplings as a fit
parameter.
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FIG. 4: (a) A schematic of the detuning during a two-pulse
sequence, where the first pulse is anX rotation and the second
pulse is a rotation around an angle set by the relative phase of
the carrier, Φ, as depicted on the Bloch sphere. (b) The qubit
readout for a rotation about X, followed by a 3π

2
rotation

about an axis Φ, for three different Φ’s. The solid lines are
fits to the model in Fig. 2(c,d,f) and the insets of Fig. 3.

Phase control was sufficient to implement a CPMG dy-
namical decoupling sequence, where π-pulses are applied
along the ŷ axis in the rotating frame, partially decou-
pling rotation errors [15]. Figure 5 shows resulting coher-
ence time, T2, for CPMG sequences up to 64 π-pulses,
which gave T2 = 19± 2µs. Values for T2 were extracted
from Gaussian fits to P0(τD), where τD is the total de-
phasing time (see inset of Fig. 4). Between 2 and 16
pulses, the scaling of coherence time with (even) pulse
number, nπ, appears well described by the power-law,
T2 = A(nπ)γ , where γ = 0.84 ± 0.05. Within a classi-
cal power-law noise model [24, 25] implies S(ω) ∼ ω−β

with a β = 5±1. The inconsistency of this result with re-
cent studies of electrical noise in the singlet-triplet qubit,
where β ∼ 0.7 [26], may reflect first-order insensitivity of
the resonant exchange qubit to detuning noise. However,
a detailed model for dynamical decoupling that distin-
guishes voltage noise from hyperfine noise has not been
developed to date. Moreover, pulse sequences designed
to decouple hyperfine noise for exchange-only qubits [27]
may also be adaptable to the resonant exchange qubit.

For nπ > 16, T2(nπ) falls below the steep power-law,
and appears to saturate around 20 µs. The measured
T1 for a splitting ω01/2π = 0.33 GHz was ∼ 40µs, and
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T2 = A(nπ)γ
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FIG. 5: T2 for various orders of CPMG-n, were each sequence
contains n π rotations about y, as depicted in the lower inset.
The upper inset depicts the detuning sequence for this experi-
ment. We found that up to n = 16, the even number of pulses
was well described by T2 = A(nπ)γ , where γ = 0.84 ± 0.05.
This translates to a power spectral density of S(ω) ∼ ω−β ,
where β = 5± 1.

decreased monotonically with increasing ω01, consistent
with phonon-based relaxation, which suggests that T1

was not limiting T2 at ω01/2π = 0.2 GHz. Pulse er-
rors are likely limiting T2 in this measurement, though
extending coherence much longer will require extending
T1.

In summary, we have introduced and demonstrated the
operation of a new quantum-dot-based qubit that uses
exchange for both the longitudinal and oscillatory trans-
verse fields. A large exchange gap prevents state leakage,
and the operating point is insensitive to first order to
fluctuations in gate-controlled detuning. Two-axis con-
trol and a large ratio (∼ 104) of coherence time to gate
operation time were demonstrated. Implementation of a
two-qubit gate [16, 28] is next experimental challenge.
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