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We examine the validity of fluctuation-dissipation relasan isolated quantum systems taken out of equilib-
rium by a sudden quench. We focus on the dynamics of trappetdose bosons in one-dimensional lattices
with dipolar interactions whose strength is changed dutirgquench. We find indications that fluctuation-
dissipation relations hold if the system is nonintegralfterahe quench, as well as if it is integrable after the
quench if the initial state is an equilibrium state of a néegnable Hamiltonian. On the other hand, we find
indications that they fail if the system is integrable bogfidse and after quenching.

The fluctuation-dissipation theorem (FDT) [1-3] is a funda-tegrability, confirmed in computational [13] and analytica
mental relation in statistical mechanics which statestiyyat  [14] calculations. Away from integrability, computatidna
ical deviations from the equilibrium state caused by anrexte studies have shown that few-body observables thermalize in
nal perturbation (within the linear response regime) get®  general [11, 15-17], which can be understood in terms of
in time in the same way as random fluctuations. The theorerthe eigenstate thermalization hypothesis (ETH) [11, 18, 19
applies to both classical and quantum systems as long as th&ye note that the nonintegrable systems studied computation
are in thermal equilibrium. Fluctuation-dissipation telas  ally belong to two main classes of lattice models: (i) spin-
are not, in general, satisfied for out-of-equilibrium sypste  polarized fermions, hard-core bosons, and spin models with
especially if the system is isolated. Studies of integraidel-  short range (nearest and next nearest neighbor) intenactio
els such as a Luttinger liquid [4] and the transverse Isiragrch  [11, 15, 16, 20], and (ii) the Bose-Hubbard model [17].
[5] have shown that the use of fluctuation-dissipation refest In this Letter, we go beyond these studies and report re-
to define temperature leads to values of the temperature thatlts that indicate that fluctuation-dissipation relasiane also
depend on the momentum mode and/or the frequency beingalid in generic isolated quantum systems after relaxation
considered. More recently, Essletr al. [6] have shown that while they fail at integrability. For that, we use exact diag
for a subsystem of an isolated infinite system, the basic fornonalization and study a third class of lattice models, haoce
of the FDT holds, and that the same ensemble that describ&®sons with dipolar interactions in one-dimension [21].eTh
the static properties also describes the dynamics. latter are of special interest as they describe experinveittis

: o - guantum gases of magnetic atoms trapped in optical lattices
The question of the applicability of the FDT to isolated [22] as well as ground state polar molecules [23]. Rydberg-

guantum systems is particularly relevant to experimentis wi i . .
cold atomic gases [7, 8], whose dynamics is considered to b&xcned alkali atoms [24] and laser-cooled ions [25] maysoo

to a good approximation, unitary [9]. In that context, the de p_rovide_ alterna_ltive realizations of cprrelated SVStemm wi
scription of observables after relaxation (whenever raiax dipolar interactions. The effect of having power-law deogy

to a time-independent value occurs) has been intensively exteractionsin the dynamllcs gnd Qescrlptlon of isolateahgu .
plored in the recent literature [10]. This is because, for is um systems after relaxation is an importantand open gresti
lated quantum systems out of equilibrium, it is not apparen{hat we address hgre. . _

that thermalization can take place. For example, if the sys- The model Hamiltonian for those systems can be written as
tem is prepared in an initial pure staft@n;) that is not an R L-1, A A,

eigenstate of the Hamiltoniad (H|@o) = E4|¢o)) (@sin  H=-3% (b}rbj+1+ H-C-) +V Z |i—||3 +QZXJZ n; (1)

Ref. [9]), then the infinite-time average of the evolutioriod =1 @l !

observabl® can be written agO(t)) = 5 « |Cal*Oaa = Odiag: WhereB}L (Bj) creates (annihilates) a hard-core bosf)ﬁ &
whereca = (Yia|@ni). Oaa = (Wa|OlWa), and we have as- go _ g) o4 it andrf, = b/b; is the number operatal.is the
sum_eq t.hat _the spectrum is nondegenerate. The outhm_e pping amplitudey the strength of the dipolar interaction,
the |nf|r1|te-t|me average can be thought of as the pfe.d.'c“oré the strength of the confining potentiad, the distance of
of a "diagonal” ensemble [11]04iag depends on the initial site j from the center of the trap, ardthe number of lattice

state through the,’s (there is an exponentially large num- sites (the total number of bosors, is always chosen to be

ber of them) while the thermal predictions depend only on the ' o ; :
total energy{@m|H @), i.e., they need not agree. p=L/3). We setl = 1 (unit of energy throughout this paper),

h = kg = 1, use open boundary conditions, and work in the
The lack of thermalization of some observables, in the spesubspace with even parity under reflection.

cific case of quasi-one-dimensional geometries close to an We focus on testing a fluctuation-dissipation relationradte

integrable point, was seen in experiments [12], and, at inquench for experimentally relevant observables, namiby, s



and momentum occupations (results for the density-densitwhere the last similarity is valid if the width of(E, w) [26]
structure factor are presented in Ref. [26]). A scenariceand is of the order of, or smaller than, the temperature. Thet®su
which FDT holds in isolated systems out of equilibrium wasin Egs. (4) and (6) suggest that FDT holds in isolated quantum
put forward by one of us in Ref. [27]. There, it was shown systems out of equilibrium under very general conditions.

that after a quantum or thermal fluctuation (assumed to occur In what follows, we study dipolar systems out of equi-
at timet’ [28], which was treated as a uniformly distributed librium and test whether their dynamics is consistent with
random variable), it is overwhelmingly likely th&@y.; =  the scenario above. This is a first step towards understand-
Criuc(t)Op, whereQ; = (O(t)) [29]. Formally,Crc(t) isre-  ing the relevance of FDT, and of the specific scenario pro-
lated to the second moments of a probability distribution fo posed in Ref. [27], to experiments with nonequilibrium ul-
O, Criue(t) = OO /(O )2, where infinite-time averages tracold quantum gases. The dynamics are studied after sud-
have been taken with respecttto Therefore, assuming that den quenches, for which the initial pure stag) is se-

no degeneracies occur in the many-body spectrum or that thdgcted to be an eigenstate of (1) fdr= Vinj and g = gini

are unimportanCriyc(t) can be written as (Hini), and the evolution_}ijls ?tudied undelfn (V = Vin and
: g=Giin), I. €.,]0(t)) = e "in'|@yi). We consider the follow-
Cric(t) O S [cal?|cpl?|Oapl?eEe 50, (2)  ing three type|s (()12>quenches|: ty>pe Yini = 0, Gini = y}—
a";fﬁ {Vsin = 0, gin = y/10} (integrable to integrable), type (ii)
{Vini = 8, gGini = ¥}— {Min =0, gin = ¥} (nonintegrable to
where the proportionality constant is such tl@{.c(0) = integrable), and type (iii}{Vini = 8, Gini = y}— {Viin = 2,
1[30]. The correlation function in Eq. (2) explicitly dep#  gg, = y} (nonintegrable to nonintegrable). We chogsgich
on the initial state througéy, . thatyx? = yx? = 4, which ensures a (nearly) vanishing density

Assuming that eigenstate thermalization occurs in thet the edges of the lattice in the ground state. The initatest
Hamiltonian of interest, the matrix elements©fin the en-  for different quenches, which need not be the ground state of

ergy eigenstate basis can be written as: Hini, is selected such th&ot = (@ni|Hin|@ni) corresponds to
O.n—O(E)S e SEV2{(E, )Ry 3 the energy of a canonical ensgmble with temperature5,
ap = AE)0ap + (B, ©)Rap ®) i. €., such thaEy = Tr{e Min/THg,} /Tr{e Hin/T},
whereE = %(Ea +Eg), @ = Eq — Eg, S(E) is the thermo- In Fig. 1, we show results f@gc(t), Cpiss(t), andCappr(t)

dynamic entropy at enerdy, e3E) = E T4 8(E—Eq), Q(E) when the observable of interest is the qccupqtiqn of tharsite
andf (E, w) are smooth functions of their arguments, &g the center of the system,_ (quahtgtwely similar results

is a random variable (e.g., with zero mean and unit variance)vere obtained for other site occupations, for momenta occu-
This is consistent with quantum chaos theory and is presunf?ations, and for the density-density structure factor)Z6he
ably valid for a wide range of circumstances [27, 31]. Fromresults are obtained for the three different quench types me
Eq. (3), it follows straightforwardly tha®ruc(t) ~ Cappr(t), tioned above and are shown for= 15 and 18. For quench

where we have defined type (i), we find that none of the three correlation functions
. . agree with each other and that the agreement does not improve
Cappr(t) D/ dw|f(E,w)|2e"*’t, (4)  with increasingL [see Figs. 1(a) and 1(b)]. There are also
- large time fluctuations, characteristic of the integraladaure
and again, the proportionality constant is such @h(0) =  of the final Hamiltonian [34]. We quantify these fluctuations

1 [32]. Therefore, we see th@f,c(t) does not depend on the by plotting the histograms druc(t) andCpiss(t) for an ex-
details of the initial state, in the same way that obsensainle tended period of time in the insets. We find the histograms to
the diagonal ensemble do not depend on such details. be broad functions for quenches (i) and (i) [Figs. 1(a)}L(d
We can then compare this result to how a typical deviation Remarkably, in quenches type (i) [Figs. 1(c) and 1(d)],
from thermal equilibrium (used to describe observablekén t Which also have a final Hamiltonian that is integrakilgyc(t)
nonequilibrium system after relaxation) caused by an egler andCpiss(t) are very similar to each other at each time and
perturbation “dissipates” in time. Assuming that the pas&is  their differences decrease with increasing This indicates
tion is small (linear response regime), and that it is apipdie  that the FDT holds. At the same time, we find differences
timet = 0, Cpjss(t), defined viaO; = Cpjss(t) Orhermas Can be  between fluctuation/dissipation correlations &g (t), in-
calculated through Kubo's formula as [27, 33] dicating that the agreement betwégn,(t) andCpiss(t) does
BT o EpT not imply _that E_q: _(3) is valid. T_hese obseryations can b_e un-
Coiss(t) [ Z e —e |Oaﬁ|2ei(Ea7EB)t7 (5) derstood if the initial state provides an unbiased sampiing
ap Eg — Eq the eigenstates of the final Hamiltonian. In that case, even
a#B though eigenstate thermalization does not occur, thezarali
tion can take place [35] and this results in the applicapbilit
of FDT. In quenches type (i), such an unbiased sampling oc-
2 it curs because of the nonintegrability of the initial Harmitm,
[f(E, )" ~ Cappr(t), whose eigenstates are random superpositions of eigenefate
(6) thefinal integrable Hamiltonian with close energies [35].

where again, we s€lpiss(0) = 1. Using Eqg. (3), one finds that

Chiss(t) ~ j:odﬁ)%g/zﬂ
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FIG. 2. Normalized variance dfryc(t) — Cpiss(t) and Cryc(t) —
Cappr(t) vs the system size for the three quenches explained in the
text [identified by Q (i), Q (ii), and Q (iii))], where the noriza-

tion factor is the average variance of the two functions fhicl the
differences are calculated, e. g., Y&#uc — Cpiss)/ %[Var(CHuc) +
Var(Cpiss)]. The observable isj_ ,. The variances are calculated
T for 2000 points between= 0 and 100.

FIG. 1. Correlation functionsCryc(t), Cpiss(t), andCappr(t) when gﬁgges(t\;ergssg?;” ﬂr?:g)?rﬁh:elfﬁel?r?ggurqgr:?ig%rﬁict(t)The
the observable ig;_, /, vs timet. Results are shown for the three 1%Diss(t) P yag y e
quenches (i)—(iii) (from top to bottom, respectively) exipled in the ~ Variance OTCFluc(t) —_CAppr(t)_’ on the other hand, eXhlbl_tS a
text, and forL = 15 (left panels) and 18 (right panels). Results for more erratic behavior, and it is not apparent whether it van-
L = 12 are presented in Ref. [26]. The insets show normalized hisishes for larger system sizes. For quench type (iii), thetined

tograms ofCe,c(t) (red filled bars) an@piss(t) (blue empty bars)  differences betweeBgyc(t), Cpiss(t), andCappr(t) exhibit a
calculated for 2000 data points between 0 and 100. fast decline with increasing, indicating that all three likely
agree in the thermodynamic limit. These results strongly su
gest that the FDT is applicable in the thermodynamic limit fo
For quenches type (iii) [Figs. 1(e) and 1(f)], on the otherquenches in which the final system is nonintegrable, as well a
hand, we find that not oni@r,c(t) andCpiss(t) are very close  after quenches from nonintegrable to integrable systeves, e
to each other, but alSBapp(t) is very close to both of them, though the ETH does not hold in the latter.
and that the differences between the three decrease with in- |n order to gain an understanding of why FDT fails or ap-
creasing-. Therefore, our results are consistent with the sysplies depending on the nature of the final Hamiltonian, we
tem exhibiting eigenstate thermalization [36], which mean explore to which extent Eq. (3) describes the behavior of the
that the assumptions made in Eq. (3) are valid, and the applinatrix elements of few-body observables in the nonintelgrab
cability of the FDT follows. Furthermore, for quenches typecase, and in which way it breaks down at integrability. In
(iii), one can see that time fluctuations are strongly supg#e  Fig. 3, we plot the off-diagonal elements of two observables
when compared to those in quenches type (i) and type (iij [bet;_, ,, and the zero-momentum occupation numbgrg vs
ter seen in the insets of Fig. 1(e)-(f)], which is a resultfaf t ~the eigenenergy differences) in a narrow energy window
nonintegrable nature of the final Hamiltonian [27, 37]. aroundE = Ey. Results are shown for matrix elements in
To quantify the differences between the three correlatiorthe eigenstates of the final Hamiltonians in quenches type (i
functions and explore their dependence on the system size fand type (iii) [38]. The off-diagonal matrix elements of bot
each quench type, we calculate the normalized variances afbservables in the eigenstates of the integrable Hangtoni
Criuc(t) — Cpiss(t) andCriyc(t) — Cappr(t). In Fig. 2, we show  [Fig. 3(a)-3(b)] exhibit a qualitatively different behavifrom
these quantities for the three quench type& v$or quench those in the nonintegrable one. In the integrable Hamilto-
type (i), the variances exhibit a tendency to saturate tora no nian, they exhibit extremely large fluctuations. In additio
zero value ad increases, which indicates th@gc(t) and  a very large fraction of those elements (largerripr, /, than
Coiss(t), as well asCriyc(t) and Cappr(t), may remain dif-  for ne_o) have vanishing values. This makes any definition
ferent in the thermodynamic limit. This is consistent with of a smooth functionf (E, w), meaningless. Those results
the findings in Refs. [4, 5] where it was shown that in thecontrast the ones obtained in the nonintegrable case, where
thermodynamic limit, conventional fluctuation-dissipatre-  the fluctuations of the matrix elements have a different na-
lations with a unique temperature do not hold in integrableure, and we do not find a large fraction of vanishing ones.
systems. For quench type (ii), we see that the variance ofo see that more clearly fow—q (the better behaved of the
Criuc(t) — Cpiss(t) decreases with increasing system size andwo observables), in the insets of Fig. 3 we show the normal-
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is not valid, provided that the initial state before the qeleis
an equilibrium state (eigenstate) of a nonintegrable asyste
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FIG. 3. Absolute value of the off-diagonal matrix elemerftda. >
andri_g in the eigenenergy basis, in a narrow energy window around
E = Eiot (with a width of 0.1), vs the eigenenergy difference =

Eq —Eg. Results are shown far= 15 (left panels) and = 18 (right
panels). (a)-(b) and (c)-(d) correspond to the final Hamito in
quenches (ii) and (iii), respectively. The green (lightygraymbols

are the matrix elements 0§y, and the black ones ofj;l_/z. In
(a)-(b), we have increased the size of the symbolsnfoi /» by a
factor of 20 relative to those faw_g. To increase the resolution of
the distribution of values in the case bf= 18, where a very large
number of data points exists, we plot only 1 out of every 1(h{oi
for ni_g in (b), and for both observables in (d). Lines are running
averages fong_g with a subset length of 50 fdr = 15 and 200

for L = 18. Insets show the histograms of the relative differences
between they_q data and running averagek(g) with subset sizes

of 1000 forL = 15 and 10000 fot. = 18. The relative difference is
defined ag|Ogp| — favg)/ favg:

ized histograms of the relative differences between the ma-
trix elements fon,_g and a “smooth” function, defined as the
running average of those elements over a large enough group
of them (examples of the running averages are presented in
the main panels). For the integrable system, we find that the
histograms are not compatible with the uniform distribatio
postulated in Eq. (3), as a very sharp peak developslabr

both system sizes. That peak becomes sharper with increas-
ing system size, reflecting an increasing fraction of vanigh
off-diagonal matrix elements in those systems. For the non-
integrable Hamiltonian, on the other hand, the histograms a
closer to a uniform distribution.

In summary, studying the dynamics of an experimentally
relevant model of trapped hard-core bosons with dipolar in-
teractions, we have found indications that the FDT is applic
ble to the properties of few-body observables in nonintelgra
isolated quantum systems out of equilibrium, and that thiis f
lows from the ETH. Furthermore, we find indications that the
FDT may also apply to integrable systems, for which the ETH
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