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We examine the validity of fluctuation-dissipation relations in isolated quantum systems taken out of equilib-
rium by a sudden quench. We focus on the dynamics of trapped hard-core bosons in one-dimensional lattices
with dipolar interactions whose strength is changed duringthe quench. We find indications that fluctuation-
dissipation relations hold if the system is nonintegrable after the quench, as well as if it is integrable after the
quench if the initial state is an equilibrium state of a nonintegrable Hamiltonian. On the other hand, we find
indications that they fail if the system is integrable both before and after quenching.

The fluctuation-dissipation theorem (FDT) [1–3] is a funda-
mental relation in statistical mechanics which states thattyp-
ical deviations from the equilibrium state caused by an exter-
nal perturbation (within the linear response regime) dissipate
in time in the same way as random fluctuations. The theorem
applies to both classical and quantum systems as long as they
are in thermal equilibrium. Fluctuation-dissipation relations
are not, in general, satisfied for out-of-equilibrium systems,
especially if the system is isolated. Studies of integrablemod-
els such as a Luttinger liquid [4] and the transverse Ising chain
[5] have shown that the use of fluctuation-dissipation relations
to define temperature leads to values of the temperature that
depend on the momentum mode and/or the frequency being
considered. More recently, Essleret al. [6] have shown that
for a subsystem of an isolated infinite system, the basic form
of the FDT holds, and that the same ensemble that describes
the static properties also describes the dynamics.

The question of the applicability of the FDT to isolated
quantum systems is particularly relevant to experiments with
cold atomic gases [7, 8], whose dynamics is considered to be,
to a good approximation, unitary [9]. In that context, the de-
scription of observables after relaxation (whenever relaxation
to a time-independent value occurs) has been intensively ex-
plored in the recent literature [10]. This is because, for iso-
lated quantum systems out of equilibrium, it is not apparent
that thermalization can take place. For example, if the sys-
tem is prepared in an initial pure state|φini〉 that is not an
eigenstate of the Hamiltonian̂H (Ĥ|ψα〉 = Eα |ψα〉) (as in
Ref. [9]), then the infinite-time average of the evolution ofthe

observablêOcan be written as〈Ô(t)〉=∑α |cα |
2Oαα ≡Odiag,

wherecα = 〈ψα |φini〉, Oαα = 〈ψα |Ô|ψα〉, and we have as-
sumed that the spectrum is nondegenerate. The outcome of
the infinite-time average can be thought of as the prediction
of a “diagonal” ensemble [11].Odiag depends on the initial
state through thecα ’s (there is an exponentially large num-
ber of them) while the thermal predictions depend only on the
total energy,〈φini |Ĥ|φini〉, i.e., they need not agree.

The lack of thermalization of some observables, in the spe-
cific case of quasi-one-dimensional geometries close to an
integrable point, was seen in experiments [12], and, at in-

tegrability, confirmed in computational [13] and analytical
[14] calculations. Away from integrability, computational
studies have shown that few-body observables thermalize in
general [11, 15–17], which can be understood in terms of
the eigenstate thermalization hypothesis (ETH) [11, 18, 19].
We note that the nonintegrable systems studied computation-
ally belong to two main classes of lattice models: (i) spin-
polarized fermions, hard-core bosons, and spin models with
short range (nearest and next nearest neighbor) interactions
[11, 15, 16, 20], and (ii) the Bose-Hubbard model [17].

In this Letter, we go beyond these studies and report re-
sults that indicate that fluctuation-dissipation relations are also
valid in generic isolated quantum systems after relaxation,
while they fail at integrability. For that, we use exact diag-
onalization and study a third class of lattice models, hard-core
bosons with dipolar interactions in one-dimension [21]. The
latter are of special interest as they describe experimentswith
quantum gases of magnetic atoms trapped in optical lattices
[22] as well as ground state polar molecules [23]. Rydberg-
excited alkali atoms [24] and laser-cooled ions [25] may soon
provide alternative realizations of correlated systems with
dipolar interactions. The effect of having power-law decaying
interactions in the dynamics and description of isolated quan-
tum systems after relaxation is an important and open question
that we address here.

The model Hamiltonian for those systems can be written as

Ĥ =−J
L−1

∑
j=1

(

b̂†
j b̂ j+1+H.c.

)

+V ∑
j<l

n̂ j n̂l

| j − l |3
+g∑

j
x2

j n̂ j (1)

whereb̂†
j (b̂ j ) creates (annihilates) a hard-core boson (b̂†2

j =

b̂2
j = 0) at sitej, andn̂ j = b̂†

j b̂ j is the number operator.J is the
hopping amplitude,V the strength of the dipolar interaction,
g the strength of the confining potential,x j the distance of
site j from the center of the trap, andL the number of lattice
sites (the total number of bosons,p, is always chosen to be
p= L/3). We setJ= 1 (unit of energy throughout this paper),
h̄ = kB = 1, use open boundary conditions, and work in the
subspace with even parity under reflection.

We focus on testing a fluctuation-dissipation relation after a
quench for experimentally relevant observables, namely, site
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and momentum occupations (results for the density-density
structure factor are presented in Ref. [26]). A scenario under
which FDT holds in isolated systems out of equilibrium was
put forward by one of us in Ref. [27]. There, it was shown
that after a quantum or thermal fluctuation (assumed to occur
at timet ′ [28], which was treated as a uniformly distributed
random variable), it is overwhelmingly likely thatOt′±t =
CFluc(t)Ot′ , whereOt = 〈Ô(t)〉 [29]. Formally,CFluc(t) is re-
lated to the second moments of a probability distribution for
Ot , CFluc(t) = Ot+t′′Ot′′/(Ot′′)2, where infinite-time averages
have been taken with respect tot ′′. Therefore, assuming that
no degeneracies occur in the many-body spectrum or that they
are unimportant,CFluc(t) can be written as

CFluc(t) ∝ ∑
αβ

α 6=β

|cα |
2|cβ |

2|Oαβ |
2ei(Eα−Eβ )t , (2)

where the proportionality constant is such thatCFluc(0) =
1 [30]. The correlation function in Eq. (2) explicitly depends
on the initial state throughcα .

Assuming that eigenstate thermalization occurs in the
Hamiltonian of interest, the matrix elements ofÔ in the en-
ergy eigenstate basis can be written as:

Oαβ = Ω(E)δαβ +e−S(E)/2 f (E,ω)Rαβ , (3)

whereE ≡ 1
2(Eα +Eβ ), ω ≡ Eα −Eβ , S(E) is the thermo-

dynamic entropy at energyE, eS(E) = E∑α δ (E−Eα), Ω(E)
and f (E,ω) are smooth functions of their arguments, andRαβ
is a random variable (e.g., with zero mean and unit variance).
This is consistent with quantum chaos theory and is presum-
ably valid for a wide range of circumstances [27, 31]. From
Eq. (3), it follows straightforwardly thatCFluc(t) ∼ CAppr(t),
where we have defined

CAppr(t) ∝
∫ +∞

−∞
dω | f (E,ω)|2eiωt , (4)

and again, the proportionality constant is such thatCAppr(0) =
1 [32]. Therefore, we see thatCFluc(t) does not depend on the
details of the initial state, in the same way that observables in
the diagonal ensemble do not depend on such details.

We can then compare this result to how a typical deviation
from thermal equilibrium (used to describe observables in the
nonequilibrium system after relaxation) caused by an external
perturbation “dissipates” in time. Assuming that the perturba-
tion is small (linear response regime), and that it is applied at
time t = 0,CDiss(t), defined viaOt =CDiss(t)OThermal, can be
calculated through Kubo’s formula as [27, 33]

CDiss(t) ∝ ∑
αβ

α 6=β

e−Eα/T −e−Eβ/T

Eβ −Eα
|Oαβ |

2ei(Eα−Eβ )t , (5)

where again, we setCDiss(0) = 1. Using Eq. (3), one finds that

CDiss(t)∼
∫ +∞

−∞
dω

sinh(ω/2T)
ω

| f (E,ω)|2eiωt ∼CAppr(t),

(6)

where the last similarity is valid if the width off (E,ω) [26]
is of the order of, or smaller than, the temperature. The results
in Eqs. (4) and (6) suggest that FDT holds in isolated quantum
systems out of equilibrium under very general conditions.

In what follows, we study dipolar systems out of equi-
librium and test whether their dynamics is consistent with
the scenario above. This is a first step towards understand-
ing the relevance of FDT, and of the specific scenario pro-
posed in Ref. [27], to experiments with nonequilibrium ul-
tracold quantum gases. The dynamics are studied after sud-
den quenches, for which the initial pure state|φini〉 is se-
lected to be an eigenstate of (1) forV = Vini and g = gini

(Ĥini), and the evolution is studied underĤfin (V = Vfin and
g= gfin), i. e., |φ(t)〉 = e−iĤfint |φini〉. We consider the follow-
ing three types of quenches: type (i){Vini = 0, gini = γ}→
{Vfin = 0, gfin = γ/10} (integrable to integrable), type (ii)
{Vini = 8, gini = γ}→ {Vfin = 0, gfin = γ} (nonintegrable to
integrable), and type (iii){Vini = 8, gini = γ}→ {Vfin = 2,
gfin = γ} (nonintegrable to nonintegrable). We chooseγ such
thatγx2

1 = γx2
L = 4, which ensures a (nearly) vanishing density

at the edges of the lattice in the ground state. The initial state
for different quenches, which need not be the ground state of
Ĥini , is selected such thatEtot = 〈φini |Ĥfin|φini〉 corresponds to
the energy of a canonical ensemble with temperatureT = 5,
i. e., such thatEtot = Tr{e−Ĥfin/TĤfin}/Tr{e−Ĥfin/T}.

In Fig. 1, we show results forCFluc(t),CDiss(t), andCAppr(t)
when the observable of interest is the occupation of the sitein
the center of the systemn j=L/2 (qualitatively similar results
were obtained for other site occupations, for momenta occu-
pations, and for the density-density structure factor [26]). The
results are obtained for the three different quench types men-
tioned above and are shown forL = 15 and 18. For quench
type (i), we find that none of the three correlation functions
agree with each other and that the agreement does not improve
with increasingL [see Figs. 1(a) and 1(b)]. There are also
large time fluctuations, characteristic of the integrable nature
of the final Hamiltonian [34]. We quantify these fluctuations
by plotting the histograms ofCFluc(t) andCDiss(t) for an ex-
tended period of time in the insets. We find the histograms to
be broad functions for quenches (i) and (ii) [Figs. 1(a)-1(d)].

Remarkably, in quenches type (ii) [Figs. 1(c) and 1(d)],
which also have a final Hamiltonian that is integrable,CFluc(t)
andCDiss(t) are very similar to each other at each time and
their differences decrease with increasingL. This indicates
that the FDT holds. At the same time, we find differences
between fluctuation/dissipation correlations andCAppr(t), in-
dicating that the agreement betweenCFluc(t) andCDiss(t) does
not imply that Eq. (3) is valid. These observations can be un-
derstood if the initial state provides an unbiased samplingof
the eigenstates of the final Hamiltonian. In that case, even
though eigenstate thermalization does not occur, thermaliza-
tion can take place [35] and this results in the applicability
of FDT. In quenches type (ii), such an unbiased sampling oc-
curs because of the nonintegrability of the initial Hamiltonian,
whose eigenstates are random superpositions of eigenstates of
the final integrable Hamiltonian with close energies [35].



3

0

1

2
C

n j=
L

/2(t
) C

Fluc

C
Diss

C
Appr

0

1

2

C
n j=

L
/2(t

)

0 5 10 15 20
t

0

1

2

C
n j=

L
/2(t

)

5 10 15 20
t

-0.2 0 0.2
0

10

20

-0.2 0 0.2
0

10

20

-0.2 0 0.2
0

10

20

-0.2 0 0.2
0

10

20

-0.1 0 0.1
0

20

40

-0.1 0 0.1
0

20

40

(a)L=15,
 V=0
 g(γ→γ/10)

(c)L=15,
   V(8→0)
   g=γ

(e)L=15,
   V(8→2)
   g=γ

(b)L=18,
 V=0
 g(γ→γ/10)

(d)L=18,
   V(8→0)
   g=γ

(f)L=18,
   V(8→2)
   g=γ

FIG. 1. Correlation functions,CFluc(t), CDiss(t), andCAppr(t) when
the observable isn j=L/2 vs timet. Results are shown for the three
quenches (i)–(iii) (from top to bottom, respectively) explained in the
text, and forL = 15 (left panels) and 18 (right panels). Results for
L = 12 are presented in Ref. [26]. The insets show normalized his-
tograms ofCFluc(t) (red filled bars) andCDiss(t) (blue empty bars)
calculated for 2000 data points betweent = 0 and 100.

For quenches type (iii) [Figs. 1(e) and 1(f)], on the other
hand, we find that not onlyCFluc(t) andCDiss(t) are very close
to each other, but alsoCAppr(t) is very close to both of them,
and that the differences between the three decrease with in-
creasingL. Therefore, our results are consistent with the sys-
tem exhibiting eigenstate thermalization [36], which means
that the assumptions made in Eq. (3) are valid, and the appli-
cability of the FDT follows. Furthermore, for quenches type
(iii), one can see that time fluctuations are strongly suppressed
when compared to those in quenches type (i) and type (ii) [bet-
ter seen in the insets of Fig. 1(e)-(f)], which is a result of the
nonintegrable nature of the final Hamiltonian [27, 37].

To quantify the differences between the three correlation
functions and explore their dependence on the system size for
each quench type, we calculate the normalized variances of
CFluc(t)−CDiss(t) andCFluc(t)−CAppr(t). In Fig. 2, we show
these quantities for the three quench types vsL. For quench
type (i), the variances exhibit a tendency to saturate to a non-
zero value asL increases, which indicates thatCFluc(t) and
CDiss(t), as well asCFluc(t) and CAppr(t), may remain dif-
ferent in the thermodynamic limit. This is consistent with
the findings in Refs. [4, 5] where it was shown that in the
thermodynamic limit, conventional fluctuation-dissipation re-
lations with a unique temperature do not hold in integrable
systems. For quench type (ii), we see that the variance of
CFluc(t)−CDiss(t) decreases with increasing system size and
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FIG. 2. Normalized variance ofCFluc(t)−CDiss(t) andCFluc(t)−
CAppr(t) vs the system size for the three quenches explained in the
text [identified by Q (i), Q (ii), and Q (iii)], where the normaliza-
tion factor is the average variance of the two functions for which the
differences are calculated, e. g., Var(CFluc−CDiss)/

1
2 [Var(CFluc)+

Var(CDiss)]. The observable isn j=L/2. The variances are calculated
for 2000 points betweent = 0 and 100.

becomes very small already forL=18, indicating thatCFluc(t)
andCDiss(t) possibly agree in the thermodynamic limit. The
variance ofCFluc(t)−CAppr(t), on the other hand, exhibits a
more erratic behavior, and it is not apparent whether it van-
ishes for larger system sizes. For quench type (iii), the relative
differences betweenCFluc(t), CDiss(t), andCAppr(t) exhibit a
fast decline with increasingL, indicating that all three likely
agree in the thermodynamic limit. These results strongly sug-
gest that the FDT is applicable in the thermodynamic limit for
quenches in which the final system is nonintegrable, as well as
after quenches from nonintegrable to integrable systems, even
though the ETH does not hold in the latter.

In order to gain an understanding of why FDT fails or ap-
plies depending on the nature of the final Hamiltonian, we
explore to which extent Eq. (3) describes the behavior of the
matrix elements of few-body observables in the nonintegrable
case, and in which way it breaks down at integrability. In
Fig. 3, we plot the off-diagonal elements of two observables,
n j=L/2, and the zero-momentum occupation number,nk=0 vs
the eigenenergy differences (ω) in a narrow energy window
aroundE = Etot. Results are shown for matrix elements in
the eigenstates of the final Hamiltonians in quenches type (ii)
and type (iii) [38]. The off-diagonal matrix elements of both
observables in the eigenstates of the integrable Hamiltonian
[Fig. 3(a)-3(b)] exhibit a qualitatively different behavior from
those in the nonintegrable one. In the integrable Hamilto-
nian, they exhibit extremely large fluctuations. In addition,
a very large fraction of those elements (larger forn j=L/2 than
for nk=0) have vanishing values. This makes any definition
of a smooth function,f (E,ω), meaningless. Those results
contrast the ones obtained in the nonintegrable case, where
the fluctuations of the matrix elements have a different na-
ture, and we do not find a large fraction of vanishing ones.
To see that more clearly fornk=0 (the better behaved of the
two observables), in the insets of Fig. 3 we show the normal-
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FIG. 3. Absolute value of the off-diagonal matrix elements of n̂ j=L/2
andn̂k=0 in the eigenenergy basis, in a narrow energy window around
E = Etot (with a width of 0.1), vs the eigenenergy difference,ω =
Eα −Eβ . Results are shown forL= 15 (left panels) andL= 18 (right
panels). (a)-(b) and (c)-(d) correspond to the final Hamiltonian in
quenches (ii) and (iii), respectively. The green (light gray) symbols
are the matrix elements of ˆnk=0, and the black ones of ˆn j=L/2. In
(a)-(b), we have increased the size of the symbols forn j=L/2 by a
factor of 20 relative to those fornk=0. To increase the resolution of
the distribution of values in the case ofL = 18, where a very large
number of data points exists, we plot only 1 out of every 10 points
for nk=0 in (b), and for both observables in (d). Lines are running
averages fornk=0 with a subset length of 50 forL = 15 and 200
for L = 18. Insets show the histograms of the relative differences
between thenk=0 data and running averages (favg) with subset sizes
of 1000 forL = 15 and 10000 forL = 18. The relative difference is
defined as(|Oαβ |− favg)/ favg.

ized histograms of the relative differences between the ma-
trix elements fornk=0 and a “smooth” function, defined as the
running average of those elements over a large enough group
of them (examples of the running averages are presented in
the main panels). For the integrable system, we find that the
histograms are not compatible with the uniform distribution
postulated in Eq. (3), as a very sharp peak develops at−1 for
both system sizes. That peak becomes sharper with increas-
ing system size, reflecting an increasing fraction of vanishing
off-diagonal matrix elements in those systems. For the non-
integrable Hamiltonian, on the other hand, the histograms are
closer to a uniform distribution.

In summary, studying the dynamics of an experimentally
relevant model of trapped hard-core bosons with dipolar in-
teractions, we have found indications that the FDT is applica-
ble to the properties of few-body observables in nonintegrable
isolated quantum systems out of equilibrium, and that this fol-
lows from the ETH. Furthermore, we find indications that the
FDT may also apply to integrable systems, for which the ETH

is not valid, provided that the initial state before the quench is
an equilibrium state (eigenstate) of a nonintegrable system.
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and A. M. Läuchli, Phys. Rev. Lett.105, 250401 (2010).

[18] J. M. Deutsch, Phys. Rev. A43, 2046 (1991).
[19] M. Srednicki, Phys. Rev. E50, 888 (1994).
[20] S. R. Manmana, S. Wessel, R. M. Noack, and A. Muramatsu,

Phys. Rev. Lett.98, 210405 (2007).
[21] T. Lahaye, C. Menotti, L. Santos, M. Lewenstein, and T. Pfau,

Rep. Prog. Phys.72, 126401 (2007); M. A. Baranov, M. Dal-

monte, G. Pupillo, and P. Zoller, Chem. Rev.112, 5012 (2012).
[22] J. Billy, E. A. L. Henn, S. Müller, T. Maier, H. Kadau, A.Gries-

maier, M. Jona-Lasinio, L. Santos, and T. Pfau, J. Stat. Mech.
86, 051603(R) (2012); B. Pasquiou, E. Maréchal, L. Vernac,
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