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The nematic state of the iron-based superconductors is studied in the undoped limit of the three-
orbital (xz, yz, xy) spin-fermion model via the introduction of lattice degrees of freedom. Monte
Carlo simulations show that in order to stabilize the experimentally observed lattice distortion
and nematic order, and to reproduce photoemission experiments, both the spin-lattice and orbital-
lattice couplings are needed. The interplay between their respective coupling strengths regulates the
separation between the structural and Néel transition temperatures. Experimental results for the
temperature dependence of the resistivity anisotropy and the angle-resolved photoemission (ARPES)
orbital spectral weight are reproduced by the present numerical simulations.
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Introduction.- The discovery of high temperature su-
perconductivity in the iron-based pnictides and selenides
has provided a novel playground where several simulta-
neously active degrees of freedom (d.o.f.) determine the
complex properties of these materials [1, 2]. The mecha-
nism that leads to superconductivity in these compounds
will only be fully understood once the spin, orbital, lat-
tice, and charge are all together considered in a consis-
tent theory. The parent compounds of most pnictides
become antiferromagnetic (AFM) at a Néel temperature
TN where long-range collinear spin order develops with
wavevector (π,0) in the iron sublattice notation [2] break-
ing rotational symmetry from C4 to C2. This state is also
characterized by an orthorhombic (Orth) lattice distor-
tion with the longer (shorter) lattice constant along the
AFM [ferromagnetic (FM)] direction and by the ferro-
order of the dxz and dyz orbitals that otherwise would
be degenerate [1]. In materials such as the undoped 122
compounds, the structural and magnetic transitions oc-
cur at the same temperature. However, neutron studies
performed on LaO1−xFxFeAs [2] indicate that the AFM
transition can be preceded by a structural transition at
a temperature TS > TN [3, 4].

There are two main proposals to explain these results:
(i) In one scenario, the magnetic interactions play the
key role [5–9]. In this context the “nematic” state [10]
at TS is induced by breaking the Z2 symmetry that links
the otherwise degenerate (π, 0) and (0, π) collinear states,
while at TN the remaining O(3) symmetry is broken.
However, explicit Monte Carlo (MC) calculations using
purely spin models [11, 12] revealed only a tiny differ-
ence between the two critical temperatures. This sug-
gests that other d.o.f. may be needed to reinforce the
nematicity mechanism since recent experiments revealed
a nematic transition well above TN for BaFe2As2 [13]
and NaFeAs [14] that persists into the doped regime far
from magnetic transitions. (ii) In another scenario, or-
bital fluctuations are the crucial component [15–21], sim-

ilarly as in the manganites where orbital order occurs well
above the magnetic critical temperatures [22].

Both approaches explain some of the experimental
data, but in practice it is difficult to disentangle the
“driver” and “passenger” roles of the different d.o.f.
The electron acoustic-phonon coupling responsible for
standard tetragonal-orthorhombic structural transitions
naively appears ruled out as a relevant d.o.f. be-
cause δ=[(ax − ay)/(ax + ay)] ≈ 0.003 in the pnic-
tides [19, 20, 23] (ax, ay=lattice constants), and this δ is
considered too small to produce the sizable anisotropies
experimentally observed [13, 23].

The purpose of this Letter is to revisit the influence
of the lattice d.o.f. in the pnictides via its introduction
into the spin-fermion (SF) model for these materials [24–
26]. This model phenomenologically considers the grow-
ing body of experimental evidence that requires a mix-
ture of itinerant and localized d.o.f. to properly address
the iron superconductors [2, 27, 28]. Here the itiner-
ant sector will involve electrons in the xz, yz, and xy
d-orbitals [29]. The localized spins represent the spin of
the other d-orbitals [24, 25] or alternatively, in a Landau-
Ginzburg context, the magnetic order parameter. To our
knowledge this is the first time that all these ingredients
are simultaneously studied, and the complexity of the
problem requires a computational analysis. Moreover,
our numerical approach also allows us to study tempera-
tures above TS where all d.o.f. develop only short-range
fluctuations [7, 30], a regime difficult to reach by stan-
dard mean-field procedures. Our main result is that a
complete description of the phenomenology of the un-
doped Fe-based superconductors requires the simultane-
ous presence of both the spin- and orbital-lattice cou-
plings, suggesting a degree of complexity in these mate-
rials that was not previously anticipated [31].

Model and Method.- The lattice SF model considered
here is based on the purely electronic model studied be-
fore [24–26] supplemented by the coupling to the lattice:
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HSF = HHopp +HHund +HHeis +HSL +HOL +HStiff . (1)

This (lengthy) full Hamiltonian is written explicitly
in the Supplementary Material [32]. HHopp is the Fe-
Fe hopping of electrons with the amplitudes selected in
previous publications to reproduce ARPES results [the
specific hopping amplitudes used here can be read in
Eqs.(1-3) and Table 1 of Ref. [29]]. The average num-
ber of electrons per itinerant orbital is n=4/3 [29]. Our
focus on the undoped case is justified: this limit already
contains the physics under discussion, calculations are
simpler than for the doped case, and the quenched disor-
dering effect of chemical doping is avoided. The Hund in-
teraction is canonical: HHund=−JH

∑
i,α Si · si,α, with Si

(si,α) the localized (itinerant with orbital index α) spin.
HHeis is the Heisenberg interaction among the localized
spins involving nearest-neighbors (NN) and next-NN in-
teractions with couplings JNN and JNNN, respectively,
and a ratio JNNN/JNN=2/3 [26] that favors collinear or-
der (any value larger than 1/2 would have been equally
effective).

Our emphasis will be on the coupling of spin and or-
bital with the structural transition. Within the spin-
driven scenario, the state between TN and TS is char-
acterized by short-range spin correlations Ψi=Si.Si+x −
Si.Si+y that satisfy 〈Ψ〉<0 [9], where Si is the spin of
the iron atom at site i and x,y are unit vectors along
the axes. This spin-nematic phase has been studied an-
alytically both in strong [5, 6, 33] and weak coupling [8].
The Orth-distortion εi associated to the elastic constant
C66 will be considered here. This distortion is produced
by coupling of lattice with the short-range magnetic fluc-
tuations via HSL=−g

∑
i Ψiεi [8, 9, 34]. Here, g is the

lattice-spin coupling, εi is the Orth strain

εi =
1

4
√

2

4∑
ν=1

(|δyi,ν | − |δ
x
i,ν |), (2)

and δxi,ν(δyi,ν) is the component along x (y) of the distance
between the Fe atom at site i of the lattice and one of its
four neighboring As atoms that are labeled by the index
ν [35]. In this context, if the atoms could not move, the
structural distortion would not occur but the C4 sym-
metry would still spontaneously break at a temperature
T ∗ > TN , leading to an anisotropic resistivity [23]. The
spin in HSL will only be the localized spin for computa-
tional simplicity. From the other perspective, the orbital
fluctuation theory attributes the structural transition to
the coupling of the lattice to the Orth quadrupole opera-
tor via HOL=λ

∑
i Φiεi. Here, λ is the orbital-lattice cou-

pling, Φi=ni,xz-ni,yz is the orbital order parameter, and
ni,α the electronic density at site i and orbital α [19, 20].

Finally, HStiff is

HStiff =
1

2
k
∑
i

4∑
ν=1

(|Riν
Fe−As| −R0)2+

+k′
∑
<ij>

[(
a0

Rij
Fe−Fe

)12 − 2(
a0

Rij
Fe−Fe

)6].

(3)

The first term in Eq. (3) is the standard harmonic energy.
The second term contains anharmonic contributions to
improve the simulations’ convergence [36].

Only the Orth-distortion is considered here since our
aim is to study the structural transition of the parent
compounds [20]. In equilibrium, the Fe atoms form a
square lattice with sites labeled by i and with lattice
parameter a0; the As atoms are at the center of each
plaquette, identified with the indices (i, ν), with coordi-
nate z=±a0/2 in alternating plaquettes so that the Fe-As
equilibrium distance is R0=

√
3a0/2. In our study, each

As atom is allowed to move in the x−y plane to a new po-
sition Riν

Fe−As = (δxi,ν , δ
y
i,ν ,±a0/2) with respect to the Fe

atom that was at site i when in equilibrium. The distance
between Fe atoms, Rij

Fe−Fe, is determined globally via the
variables ax and ay, both equal to a0 when in equilib-

rium, satisfying the constraints 2Nax =
∑N

i=1

∑
ν |δxi,ν |

and 2Nay =
∑N

i=1

∑
ν |δ

y
i,ν | where N is the number of

sites and ν=1,...,4 are the four As atoms connected to
each Fe. Note that this procedure is qualitatively differ-
ent from studies of Jahn-Teller distortions in Mn-oxides
where the Mn-Mn distance was fixed [22], while here the
Fe-Fe distances can change due to the Orth-distortion
leading to the global adjustments in lattice spacings.

The Hamiltonian is here studied via a standard MC
simulation in the classical (a) localized spins Si and (b)
atomic displacements δxi,ν and δyi,ν . For each MC configu-
ration of spins and atomic positions the fermionic quan-
tum Hamiltonian is diagonalized via library subroutines,
as extensively discussed in the manganite context [22],
rendering the study computationally demanding.
Results.- The MC simulations were performed on 8×8

square clusters using “twisted boundary conditions” that
effectively reduce finite size effects, as discussed be-
fore [26]. Typically 8,000 MC steps were used for ther-
malization and 50,000-100,000 steps for measurements at
each temperature T and for each set of parameters. The
Hund interaction was set to JH=0.1 eV, and the classical
Heisenberg couplings to JNN=0.012 eV and JNNN=0.008
eV, similarly as in Ref. [26]. Fixing some parameters
to values used in previous investigations simplifies the
analysis and allow us to focus on the effects of the
lattice into a previously studied system. The stiffness
constants were selected so that the dimensionless cou-
plings λ̃= 2λ

kW and g̃= 2g
kW [22] are experimentally realis-

tic [37] (W=fermionic bandwidth). Calculations indicate
that both parameters should be smaller than 1 in pnic-
tides [7, 19, 20, 38]. The magnetic transition will be



3

determined by the magnetic susceptibility

χS(π,0) = Nβ〈S(π, 0)− 〈S(π, 0)〉〉2, (4)

where β = 1/kBT , N is the number of lattice sites, and
S(π, 0) is the magnetic structure factor [at the wavevec-
tor (π, 0) of relevance in pnictides] obtained via the
Fourier transform of the real-space spin-spin correlations
measured during the simulations. The structural transi-
tion is determined by the behavior of the lattice suscep-

tibility defined by χδ=Nβ〈δ − 〈δ〉〉2, where δ =
(ax−ay)
(ax+ay) .
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FIG. 1: (Color online) Spin magnetic susceptibility χS(π,0)
(circles), spin-nematic order parameter 〈Ψ〉 (filled squares),
and lattice distortion δ (triangles) vs. T at g̃ = 0 and (a)

λ̃ = 0.12 and (b) λ̃ = 1.2 (in the latter, open squares indicate
orbital order). TN is indicated by the dashed line.

Individual couplings.- To isolate the individual roles
that the spin and orbital d.o.f. play in their interaction
with the lattice, first the case g̃ = 0 was studied, vary-
ing T at several values of λ̃. At λ̃ = 0.12 neither a
sizable lattice distortion [as indicated by the triangles in
Fig. 1(a)] nor orbital order were observed, and only a
Néel transition at TN = 90 K into a collinear AFM (π, 0)
state was found (see circles in the figure). To develop
a more robust lattice distortion λ̃ must be increased to
unphysical large values. In fact, numerically it was ob-
served that varying λ̃ the orbital order and structural
distortion are stabilized for λ̃ > 0.8. However, in this
λ̃ regime, already larger than estimations [19, 38], the
Orth-distortion has the longest lattice constant along the
FM direction (see Fig. 1(b) at λ̃=1.2), qualitatively oppo-
site to experimental observations [39]. As a consequence,
in our model, that relies on a particular set of hop-
ping amplitudes chosen to fit ARPES experiments, the
physical Orth/magnetic state of pnictides cannot arise
from short-range orbital fluctuations alone [20]. Let us
study next the role played by the spin-lattice coupling
by setting instead λ̃=0 and focusing on, e.g., g̃=0.16. In
this case, a peak in χδ [see Fig. 2(a)] denotes a struc-
tural transition. This transition now has the experi-
mentally correct Orth-distortion below TN , i.e. δ > 0,
and it occurs simultaneously with the Néel transition at
TS=TN=153 K. The ordered phase now has both long-

range magnetic order and a long-range Orth-distortion
with δ=(ax−ay)/(ax+ay) ≈ 0.0037 (green triangles), re-
markably close to experiments suggesting that the small
couplings to the lattice considered here are physically
reasonable. However, setting λ̃ = 0 no orbital order was
observed, at least with the hopping amplitudes employed
here. Moreover our study shows that TN remains equal
(within the accuracy of our effort) to TS in the physical
regime, contrary to experiments. Then, neither the lim-
its λ̃=0 nor g̃=0 are sufficient to fully accommodate the
phenomenology of the pnictides.
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FIG. 2: (color online) (a) Spin magnetic susceptibility χS(π,0)
(open circles), lattice distortion susceptibility χδ (filled cir-
cles), spin-nematic order parameter 〈Ψ〉 (squares), and lat-
tice distortion δ (triangles) vs. T for couplings g̃=0.16 and

λ̃=0. TN and the structural transition temperature TS are
indicated by the dashed line. (b) The temperature difference

between TS and TN vs. λ̃, at g̃ = 0.08 and 0.16.

Combined couplings.- Our main result is that the com-
bined effect of the coupling of the lattice to both spins and
orbitals is needed to reach a regime with all the character-
istics of the states found experimentally in pnictides. By
turning on both the spin- and orbital-lattice interactions
our MC studies show that the structural transition moves
to a temperature higher than the magnetic transition so
that TS > TN , as shown in Fig. 2(b) at g̃ = 0.16 and
0.08. For small couplings in the experimental range, such
as λ̃ = 0.12 and g̃ = 0.16, the difference TS − TN is con-
comitantly small but it is numerically clear, with χδ sys-
tematically above (below) χS(π,0) at temperatures above
(below) the critical region. More specifically, TN = 156 K
from the peak in χS (open black circles) in Fig. 3, and
TS = 158 K from the peak in χδ (filled circles). The dif-
ference in the position of the two maxima (see inset) has
been extensively analyzed repeating MC runs with differ-
ent starting configurations and statistics, and it appears
robust. Moreover, TS − TN can be further enhanced by
increasing λ̃ [see Figs. 2(b) and 9 of Ref. [32]] [40]. The
intermediate phase has a broken Z2 symmetry with short-
range NN spin-spin correlations characterized by 〈Ψ〉<0
indicating spin-nematic order (filled squares), δ > 0 indi-
cating Orth distortion (triangles), and 〈Φ〉>0 indicating
orbital order (open squares).
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FIG. 3: (color online) Spin magnetic susceptibility χS(π,0)
(open circles), lattice distortion susceptibility χδ (filled cir-
cles), spin-nematic order parameter 〈Ψ〉 (filled squares), or-
bital order 〈Φ〉 (open squares), and lattice distortion δ (trian-

gles) vs. T at couplings g̃=0.16 and λ̃=0.12. TN and TS are
indicated by the dashed lines. Inset: close-up of the χS(π,0)

and χδ peaks, shifted vertically for better comparison.

The order of the transitions was also investigated. In
Fig. 4(a) the spin-nematic order parameter 〈Ψ〉 is shown
varying T at several λ̃’s and fixed g̃=0.16. At small λ̃,
where TN=TS according to Fig. 2(a), the transition is
abrupt as in a first-order transition. Upon increasing λ̃,
leading to TS>TN , the transition becomes continuous as
in a second-order transition. This is in agreement with
predictions of an effective low-energy model [8].

Comparison with experiments.- As in the previous ef-
fort employing the purely electronic SF model [26] the
resistance R along the AFM and FM directions was calcu-
lated varying T . While the reproduction of the uniaxial-
pressure experimental results [23] required previously an
explicit anisotropy in the Heisenberg couplings to mim-
ick strain, now the asymmetry develops spontaneously as
shown in Fig. 4(b). R along the FM direction becomes
larger than along the AFM direction at T ≈ TS suggest-
ing that the anisotropy observed above TS in experiments
may be due to the external strain [41, 42].

Our study also reproduces the ARPES experi-
ments [43–45] where an asymmetry develops between the
spectral weight for the xz and yz orbitals along the Γ−X
and the Γ − Y directions upon cooling. In Fig. 5 it is
shown that along the Γ − X [Γ − Y ] direction, mainly
near (π, 0) [(0, π)], the spectral weight for the yz (xz)
orbital moves closer to (further from) the Fermi level as
T is lowered, compatible with the development of or-
bital order with 〈Φ〉>0. The asymmetry is obtained here
without explicit symmetry breaking at the Hamiltonian
level [46]. Note also that orbital order may only oc-

cur near the Fermi Surface [47]. It is important to re-
mark that in spite of the small values of λ̃ and g̃ used
in our effort, their influence is sufficient to create observ-
able consequences such as the anisotropies in transport
and ARPES. In addition, a recent pair-distribution func-
tion analysis reported the presence of robust local Orth-
distortions [48], hinting that the lattice d.o.f. is more
important than previously believed [49].
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FIG. 4: (Color online) (a) Spin-nematic order parameter 〈Ψ〉
vs. T at g̃ = 0.16 and for the values of λ̃ indicated. (b) MC
resistance along the x (AFM) and y (FM) direction varying

T . Dashed lines indicate TN and TS at g̃ = 0.16 and λ̃ = 0.12.

Conclusions.- In the model analyzed here, the cou-
plings of the spin and orbital d.o.f. with the lattice
are both important to stabilize the state that breaks
the C4 symmetry above the Néel transition. The spin-
lattice coupling induces the correct experimentally ob-
served Orth-distortion, while the orbital-lattice coupling
generates the ARPES-observed orbital order and the
higher temperature structural transition. As a conse-
quence, our study suggests that the complex nematic
properties of the pnictides parent compounds arise from
a subtle cooperation among all the participating degrees
of freedom.
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