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We develop an approach to realizing a topological phase transition and non-Abelian braiding
statistics with dynamically induced Floquet Majorana fermions (FMFs). When the periodic driv-
ing potential does not break fermion parity conservation, FMFs can encode quantum information.
Quasi-energy analysis shows that a stable FMF zero mode and two other satellite modes exist in
a wide parameter space with large quasi-energy gaps, which prevents transitions to other Floquet
states under adiabatic driving. We also show that in the asymptotic limit FMFs preserve non-
Abelian braiding statistics and, thus, behave like their equilibrium counterparts.
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Introduction — Proposals of solid state [1–7] and cold
atomic [8–10] systems hosting Majorana fermions (MFs)
have been a recent focus of attention. These systems
present novel prospects for quantum computation since
a widely separated pair of MF bound states, that for-
mally correspond to zero-energy states of an effective
Bogoliubov-de Gennes (BdG) Hamiltonian, forms a non-
local fermionic state that is immune to local decoher-
ence. Moreover, Majorana zero-energy modes obey non-
Abelian braiding statistics and thus have potential for
topological quantum information processing. Among
the key signatures of MFs are a zero-bias resonance in
tunneling [11, 12], half-integer conductance quantiza-
tion [13, 14], a 4π Josephson effect [15], and interfero-
metric schemes [16–19]. Some of these predictions have
already received possible experimental support [20–24].

Topological states of matter can be induced dynami-
cally by time-periodic driving, the so-called Floquet ap-
proach [25–27]. This brought to the agenda the new
concept of Floquet Majorana fermion (FMFs) [10, 28].
It turns out that even if the system is initially in the
topologically trivial state, its Floquet version may exhibit
topological properties. Floquet methods may help, for in-
stance, in realizing MFs without a magnetic field [28]. A
realization of FMF states where they can be manipulated
and tuned in a wide parameter space is therefore highly
desirable. The natural questions for FMF systems are:
whether they are robust and tunable, whether they can
encode quantum information, and whether they follow
non-Abelian braiding statistics as for their equilibrium
counterparts. Our study aims to answer these questions.

We consider a generic platform to investigate non-
Abelian braiding statistics and potentially to realize
topological quantum computation based on FMFs. The
model is broadly applicable to both semiconductor-
superconductor heterostructures with strong spin-orbit
interaction and in-plane magnetic field [6, 7], and to
cold atomic systems where superconducting order is con-
trolled by Feshbach resonances while spin-orbit coupling
and Zeeman field effects are induced by an optical Ra-
man transition [10]. The latter realization is practically

more promising since it allows a greater degree of con-
trol. Furthermore, cold atom systems can be isolated
thus suppressing dissipation on long time scales.
We show, first, that if FMFs exist, they will exist at

any instantaneous time. Therefore, FMFs can encode
quantum information if the driving potential does not
break fermion parity conservation. We study the quasi-
energy spectrum of the problem analytically in the limit
that the frequency is large compared to the band width.
We also perform exact numerical calculations which cap-
ture certain features of the spectrum beyond this limit.
A broad range of parameters supporting FMFs is identi-
fied as a function of driving frequency ω and amplitude
K for two specific driving scenarios: periodic modulation
of either the chemical potential or the Zeeman field. Fi-
nally, by using a two-time formalism [29, 30], we show
that FMFs follow the same non-Abelian braiding statis-
tics as their stationary counterparts. This conclusion
stems from the observation that a generalized Floquet
Berry matrix does not affect the non-Abelian braiding
statistics of FMFs since a large quasi-energy gap ensures
no transitions to other Floquet quasi-energy states in the
adiabatic movement.
Floquet Theorem for Majorana Fermion — Let us con-

sider Floquet theory [31]. Suppose that the Hamilto-
nian has an explicit time dependence Ĥ(t) = Ĥ(t + T )
with period T = 2π/ω, where ω is the driving fre-
quency. The solution of the Schrödinger equation can
be described by a complete set of time-dependent states
|Φα(t)〉 = e−iǫαt|φα(t)〉, where the quasi-energies ǫα sat-
isfy the equation [Ĥ(t) − i∂t]|φα(t)〉 = ǫα|φα(t)〉 and
|φα(t)〉 = |φα(t+T )〉 are Floquet states (hereafter ~ = 1).

The evolution operator Û(t) = T exp(−i
∫ T

0 Ĥ(t)dt) has
the following property

Û(t+ T, t)|φα(t)〉 = e−iǫαT |φα(t)〉. (1)

One can define an effective stationary Hamiltonian Ĥeff

through the relation (generalizing the notion in Refs. [26,
27])

Û(t+ T, t) ≡ e−iĤeffT , 0 ≤ t < T, (2)
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with Ĥeff(t)|φα(t)〉 = ǫα|φα(t)〉. Here, t is a parameter of
this eigenvalue problem. The effective Floquet Hamilto-
nian is defined at each value of the time parameter, and
the topological properties of each of these Hamiltonians
is the same [26, 27].

If the system is described by a BdG Hamiltonian, the
quasi-particle excitation spectrum will possess a particle-
hole symmetry even if a time-dependent potential is
added [26]. If we define the operator γ̂†ǫ (t) as the cre-
ation operator for the quasi-energy state |φǫ(t)〉, the re-

lation γ̂ǫ(t) = γ̂†−ǫ(t) is guaranteed. So, the zero quasi-
energy state reveals the existence of a FMF [10]. The
full wavefunction for ǫ0 = 0 can be written as |Φ0(t)〉=
e−iǫ0 |φ0(t)〉= |φ0(t)〉= γ̂0(t)|0〉, with γ̂0(t) = γ̂†0(t). This
argument shows that if the zero quasi-energy state exists,
a zero energy FMF mode γ(t) exists for every value of the
time parameter t. While the MF operator evolves period-
ically in time γ̂(t) = γ̂(t+ T ), it is in general different at
different instantaneous times, γ̂(t) 6= γ̂(t′). For any fixed
t, FMFs have the same properties as their equilibrium
counterparts, and thus are localized in space [28, 38].

Quasi-Energy Spectrum and Floquet Majorana

Fermion — To demonstrate the existence of FMFs
consider a one dimensional wire with Rashba spin-orbit
interaction λSO, Zeeman splitting Vz, and proximity-
induced superconducting term ∆. The system can be
described by a tight-binding Hamiltonian [6, 7, 10]:

Ĥ0 =
∑

i,σ

[

−η
(

ĉ†i+1σ ĉiσ + h.c.
)

+ µLĉ
†
iσ ĉiσ

]

+
∑

i

Vz

(

ĉ†i↑ĉi↑ − ĉ†i↓ĉi↓

)

+∆
∑

i

(

ĉ†i↑ĉ
†
i↓ + h.c.

)

+ λSO
∑

i

(

ĉ†i+1↑ĉi↓ − ĉ†i+1↓ĉi↑ + h.c.
)

, (3)

Here, i and σ =↑↓ denote fermion site and spin indices
while ĉiσ(ĉ

†
iσ) are corresponding operators, η is the hop-

ping term along the chain which yields a band width
D = 4η, and µL is the chemical potential of the lat-
tice model which is set to the particle-hole symmetric
point [32]. Note that Hamiltonian Eq. (3) is equally
generic for a system of cold atoms [10].

To add time dependence, it is natural to consider mod-
ulating one of the parameters in Ĥ0: the chemical po-
tential and the Zeeman field. We first consider periodic
modulation of the chemical potential; the Hamiltonian is
Ĥ(t) = Ĥ0 + Ĥµ(t) with

Ĥµ(t) = K cos(ωt)
∑

i

(n̂i↑ + n̂i↓), (4)

where n̂iσ = ĉ†iσ ĉiσ. To calculate the quasi-energy, one
can choose a Floquet basis [33]

|{niσ};m〉 = e−
iK sin(ωt)

ω

∑
i(n̂i↑+n̂i↓)+imωt |{niσ}〉 , (5)

where |{niσ}〉 is the basis of the unperturbed system,
and m labels the photon sector of the Floquet basis. The
quasi-energy can be obtained by diagonalizing the Flo-
quet operator Ĥ(t) − i∂t in this basis. The orthonor-
mality condition of the Floquet states is only defined
in an extended Hilbert space [34], so the inner product
must include an extra time integral over a full period:

〈〈·|·〉〉 = (1/T )
∫ T

0
dt〈·|·〉. The matrix elements read

〈〈{niσ};m|Ĥ(t)− i∂t|{n′
iσ};m′〉〉

=
1

T

∫ T

0

dt〈{niσ}|e
iK sin(ωt)

ω

∑
i
(n̂i↑+n̂i↓)

(

Ĥ0 +mω
)

×e−
iK sin(ωt)

ω

∑
i
(n̂i↑+n̂i↓)|{n′

iσ}〉e−i(m−m′)ωt. (6)

Since different photon sectors are separated by an energy
gap of order ω, in the limit ω ≫ D, the admixture of pho-
ton sectors can be neglected; this is in essence the rotat-
ing wave approximation. Then, we can consider only the
zero photon sector and obtain an effective Floquet Hamil-
tonian by computing the m = m′ = 0 matrix element.
The key point to notice is that only the superconducting
term in (3) fails to commute with the chemical potential
operator

∑

i(n̂i↑+ n̂i↓). Evaluation of Eq. (6) within this
rotating wave approximation (RWA) yields an effective
Floquet Hamiltonian with exactly the same form as Ĥ0

with the pairing coupling ∆ effectively renormalized to

∆eff = ∆J0(2K/ω). (7)

(J0(x) is the zero order Bessel function of the first kind.)
We conclude from Eq. (7) that in Floquet systems one

may induce a topological phase transition dynamically.
Indeed, recall that the regime for a topological supercon-
ducting phase of Ĥ0, which supports MFs, requires the
condition V 2

z > ∆2+µ2 (µ = µL+2η) [6, 7, 32]. Even if
initially this condition is not satisfied so that the system
is in the topologically trivial state, the renormalization
∆ → ∆eff may make a topological phase possible since
∆eff < ∆. Thus, periodic modulation of the chemical
potential provides a way to tune the topological phase
and so realize MFs by varying the parameter K/ω. The
rescaling Eq. (7) holds only, of course, to the extent that
off-diagonal couplings can be neglected; we address the
generic case numerically below and show that more dra-
matic changes in behavior are entirely possible.
For periodic modulation of the Zeeman field, a sim-

ilar analysis can be carried out by adding Ĥz(t) =
K cos(ωt)

∑

i(n̂i↑ − n̂i↓) to Ĥ0. Since only the spin-orbit
term in Eq. (3) does not commute with the Zeeman term,
the spin-orbit parameter is modified in the effective Flo-
quet Hamiltonian: λSO → λSOJ0(2K/ω). Thus, periodic
Zeeman modulation cannot induce a topological phase
transition if one keeps only the zero photon sector. How-
ever, numerical investigation beyond the RWA [keeping
all off-diagonal blocks of the effective Floquet Hamilto-
nian ∝ Jm−m′(2K/ω)] reveals that FMFs do, in fact,
appear, and so we now turn to our numerical results.
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FIG. 1: (color online) Quasi-energy spectrum for square-wave
driven chemical potential. Note the appearance of an ǫ0 = 0
solution for a wide range of parameters; this corresponds
to the FMF localized at the end of the wire. Parameters:
η = 1.5 (full band-width D = 4η = 6.0), Vz = 1.0, ∆ = 1.0,
λSO = 1.2, and (µ1 + µ2)/2 = 0.5. [Left panels]: quasi-
energy near ǫ = 0, as a function of driving period T for
∆µ = |µ1 − µ2| = 2.6 (upper), and as a function of driv-
ing amplitude ∆µ for T = 1.75 (lower). [Right upper panel]:
quasi-energy near ǫ = ω/2 as a function of driving amplitude
∆µ for T = 0.6. [Right lower panel]: Finite size splitting
(indicating the coupling between two FMFs at the two ends)
for ǫ = 0 mode as a function of the number of sites in the
chain (T = 1.75, ∆µ = 2.0). The finite size splitting shows
exponential suppression accompanied by oscillations. There
are N = 260 sites in the chain. The experimental availability
of those parameters is discussed in [38]. Note: the unit used
for the quasi-energies is ω/2 = π/T .

For numerical convenience we consider square-wave
driving of the chemical potential or Zeeman field: µ = µ1

for nT < t < (n + 1/2)T , and µ = µ2 for (n + 1/2)T <
t < (n + 1)T (with n = 0, 1, 2, ...), and similarly for
Vz . The evolution operator for the full period then reads

Û(T, 0) = e−i
Ĥ2T

2~ e−i
Ĥ1T

2~ , and the quasi-energy spectrum
ǫα is obtained numerically using Eq. (1) directly from
Eq.(3) without RWA. In all cases here, the parameters
at any instantaneous time correspond in the static sys-
tem to the topologically trivial phase.

The numerical results (ω ∼ D) for periodically mod-
ulated chemical potential are shown in Fig. 1. Clearly,
one obtains stable ǫ = 0 Floquet Majorana zero modes
for a large range of parameters (left panels). Since quasi-
energy is only defined in an interval of ω (e.g. from −ω/2
to ω/2), another type of FMF exists at ǫ = ±ω/2 with
e−iωt/2γω/2 = [e−iωt/2γ̂ω/2]

† [10], as observed in the right
panel of Fig. 1 (and SI [38]). Note that the parameters
used in Fig. 1 are very far from those for which the RWA
result Eq. (7) yields a FMF: here V 2

z −µ2 < 0 at all times,
so no renormalized ∆ can yield a non-trivial phase. Nev-
ertheless, FMF appear once ∆µ surpasses a threshold
∆µc. The figure shows that the threshold for an ǫ = ω/2
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FIG. 2: (color online) Quasi-energy spectrum for square-wave
driving of the Zeeman splitting, near ǫ = 0. Parameters:
η = 1.4 (full band-width D = 4η = 5.6), (Vz1 + Vz2)/2 = 1.0,
∆ = 2.0, λSO = 1.5, and µ = 0.0. Left panel: quasi-energy as
a function of driving period T , for ∆Vz = |Vz1 − Vz2| = 1.8.
Right panel: quasi-energy as a function of driving amplitude
∆Vz, for T = 1.1. There are 260 sites in the chain.

FMF can be very small compared to that for an ǫ = 0
FMF, and also that the quasi-energy gap can be tuned by
varying ∆µ. The splitting of a ǫ = 0 mode due to finite
size effects is plotted in the right lower panel; it shows
the expected decay of the level splitting as the number
of sites, and hence the separation between the two FMF,
increases.

The quasi-energy spectrum with periodic Zeeman
splitting is shown in Fig. 2. It also reveals FMFs. We
stress once again that to obtain FMF in this case, the
RWA is not enough and off-diagonal blocks of the Flo-
quet Hamiltonian are crucial.

Floquet Topological Qubit and Non-Abelian braiding

Statistics — A natural question is whether FMFs can
form topological qubits, as their static counterparts do.
FMF can certainly encode quantum information: an
FMF exists at all instantaneous times, and neither chem-
ical potential driving nor Zeeman driving changes the
total fermion parity. Then, a more difficult question is
whether FMFs obey non-Abelian braiding statistics. We
will provide an argument for a 2D system, which can then
be generalized to a 1D network following the argument
for static MF [35].

Suppose that FMFs are moved (which can be achieved
by tuning the driving potential on and off, or chang-
ing the driving amplitude,) along a path R(t) with the
Schrödinger equation [Ĥ(R(t), t) − i∂t]|Φ(t)〉 = 0. The
position of the FMF R(t) is assumed to vary on a very
slow time scale compared to the fast periodic driving.
Then, it is convenient to separate the fast and slow time
scales, and apply the two-time formalism of Floquet the-
ory [29, 30]: i∂t → i∂t + i∂τ , where t indicates the fast
time and τ denotes the slow time. Then the Schrödinger
equation becomes

i∂τ |Φ(R(τ), t)〉 =
[

Ĥ(R(τ), t) − i∂t

]

|Φ(R(τ), t)〉. (8)

It was pointed out by Breuer and Holthaus [29] (see also
[36]) that a Floquet system follows a generalized adia-
batic theorem. Define the instantaneous (for τ) quasi-
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energy eigenstates using the Floquet operator
[

Ĥ(R(τ), t) − i∂t

]

|φα(R(τ), t)〉 = ǫα(R(τ))|φα(R(τ), t)〉.
(9)

Suppose the system is initially in a Floquet state
|Φ(R(τ = 0), t)〉 = |φα(R(τ = 0), t)〉. Standard proce-
dures in quantum mechanics can be applied to Floquet
states as long as the extended inner product mentioned
above, 〈〈·|·〉〉, is used. Second order perturbation theory
then yields [29, 36]

|Φ(R(τ), t)〉 = e−iθα(τ)e−iχα(τ)
(

|φα(R(τ), t)〉

−∑

β 6=α |φβ(R(τ), t)〉 〈〈φα(R(τ))|i∂τ |φβ(R(τ))〉〉
ǫβ(R(τ))−ǫα(R(τ))

)

, (10)

where θα(τ) =
∫ τ

0 dτ
′ǫα(R(τ

′)) is the dynamical phase,

and χα(τ) =
∫ τ

0
dτ ′〈〈φα(R(τ ′))|i∂τ ′ |φα(R(τ ′))〉〉 is the

generalized Berry phase. Therefore, to avoid transitions
to other quasi-energy states, the change in time scale τ
must be slow and the quasi-energy gap should be large:
|ǫβ(R(τ)) − ǫα(R(τ))| ≫ |〈〈φα(R(τ))|i∂τ |φβ(R(τ))〉〉|.
We assume this condition is satisfied so that the system
will stay in its initial Floquet state.
The Floquet Majorana excitations can be described by

a Bogoliubov quasi-particle operator,

γ̂†(t) =

∫

dr
[

u(r, R(τ), t)ψ̂†(r)+v(r, R(τ), t)ψ̂(r)
]

, (11)

where ψ̂†(r) (ψ̂(r)) creates (annihilates) a fermion at r,
and v = u∗ for a MF. A U(1) gauge transformation which
changes the superconducting order parameter phase by
2π [37] is allowed by using the extended space of the Flo-

quet system [38]. This causes a minus sign on both ψ̂†(r)

and ψ̂(r), changing the sign of the FMF operator as well.
Due to such multivaluedness, a branch cut is necessary to
define the phase of the wave function. So, the exchange
of two FMFs γ̂i(t) and γ̂j(t) can induce a transforma-
tion: γ̂i(t) → γ̂j(t) and γ̂j(t) → −γ̂i(t) (since one of
the FMF, say γ̂j(t), must pass through the branch cut).
For a 1D network, the exchange of two FMFs (through
a T-junction, for instance) flips the sign of the supercon-
ducting pairing term, which results in exactly the same
transformation as in the 2D case [35].
Given two FMFs γ̂1(t) and γ̂2(t), one can form a

non-local regular fermion d̂†(t) = (γ̂1(t) + iγ̂2(t))/
√
2.

Let |G(t)〉 be the Floquet BCS state which is annihi-
lated by any Floquet quasi-energy operators. |G(t)〉 and
d̂†(t)|G(t)〉 form a two-fold degenerate space. The ex-
change of two MFs results in |G(t)〉 → eiϕ|G(t)〉 and

d̂†(t)|G(t)〉 → eiϕeiπ/2d̂†(t)|G(t)〉. The π/2 phase differ-
ence after the transformation signifies non-Abelian braid-
ing statistics [39, 40].
The exchange of two MF can also induce an extra uni-

tary evolution involving a non-Abelian Berry matrix [41].
The form of the matrix can be generalized to a Floquet

system [38] by replacing 〈·|·〉 with 〈〈·|·〉〉; the unitary evo-
lution then reads

Û(τ) = P exp

[

i

∫ τ

0

M(τ ′)dτ ′
]

(12)

where P denotes path-ordering and Mαβ(τ) =
〈〈φα(R(τ))|i∂τ |φβ(R(τ))〉〉 is the generalized non-
Abelian Berry matrix [38]. We want to test whether
Mαβ causes any extra phase difference that breaks the
non-Abelian braiding statistics of FMFs. First, the non-
diagonal matrix elements of Mαβ are zero since fermion
parity is conserved (as emphasized above this is true for
all driving scenarios). Second, we follow a procedure
similar to that for a stationary MF [39, 40] where the

odd parity element i〈〈G|d̂ ∂τ
(

d̂†|G〉〉
)

is written as the
sum of the even parity element i〈〈G|∂τ |G〉〉 and an extra

term i〈〈G|(d̂∂τ d̂†)|G〉〉. It is just this term that might af-
fect the the phase difference π/2 and so the non-Abelian
braiding statistics. By using Eq. (11) and the MF condi-
tion vi = u∗i one finds

〈〈G|(d̂∂τ d̂†)|G〉〉 =
2i

T

∫ T

0

dt

∫

drRe(u∗1∂τu2 − u∗2∂τu1).

(13)
For two completely spatially separated FMFs (infinite
wire), this term is zero, and the non-Abelian Berry phase
does not affect the desired statistics of FMFs. For finite
wires, a small correction due to the overlap of the two
wave functions can induce error in FMF qubit manipu-
lation, but it is exponentially small as the spatial sepa-
ration of two FMFs increases [38].
Summary — Periodic modulation of the chemical po-

tential or the Zeeman field appears to be a promising
way to produce FMFs, both of which can be realized in
1D cold atom condensates. We find that Floquet MFs
are robust and can be generated in a wide parameter
range. This system may have potential for topological
quantum computation since FMFs obey the same non-
Abelian braiding statistics as their equilibrium counter-
parts.
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